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Editor's Foreword 

The problem of communicating in a coherent fashion recent developments 
in the most exciting and active fields of physics continues to be with us. 
The enormous growth in the number of physicists has tended to make the 
familiar channels of communication considerably less effective. It has 
become increasingly difficult for experts in a given field to keep up with 
the current literature; the novice can only be confused. What is needed is 
both a consistent account of a field and the presentation of a definite "point 
of view" concerning it. Formal monographs cannot meet such a need in a 
rapidly developing field, while the review article seems to have fallen into 
disfavor. Indeed, it would seem that the people who are most actively 
engaged in developing a given field are the people least likely to write at 
length about it. 

FRONTIERS IN PHYSICS was conceived in 1961 in an effort to 
improve the situation in several ways. Leading physicists frequently give 
a series of lectures, a graduate seminar, or a graduate course in their special 
fields of interest. Such lectures serve to summarize the present status of a 
rapidly developing field and may well constitute the only coherent account 
available at the time. One of the principal purposes of the FRONTIERS IN 
PHYSICS series is to make notes on such lectures available to the wider 
physics community. 

ix 



x 

As FRONTIERS IN PHYSICS has evolved, a second category of 
book, the informal text/monograph, an intermediate step between lecture 
notes and formal texts or monographs, has played an increasingly important 
role in the series. In an informal text or monograph an author has reworked 
his or her lecture notes to the point at which the manuscript represnts a 
coherent summation of a newly-developed field, complete with references 
and problems, suitable for either classroom teaching or individual study. 

The modern theory of second order phase transitions and the 
renormalization group, which was developed some twenty years ago by 
Kenneth Wilson, represents one of the great accomplishments in theoretical 
physics in the latter part of this century. It has had a profound influence on 
subsequent experimental and theoretical work in statistical physics, and, 
more generally, in condensed matter physics. In the present lecture note 
volume, Nigel Goldenfeld, who has played a seminal role in applying 
renormalization group concepts to non-equilibrium phenomena, presents a 
remarkably lucid elementary account of phase transitions and the 
renormalization group; an account which is intended for both beginning 
graduate students and research scientists working in other fields. He draws 
heavily on experimental examples and elementary physical ideas to discuss 
how phase transitions occur both in principle and in practice. He shows 
how scaling ideas and renormalization group concepts may be applied not 
only to "classical" systems, such as ferromagnets, but also to phenomena 
which are far from equilibrium, such as non-linear diffusion in fluid 
dynamics. Systems which display broken ergodicity, such as spin glasses 
and rubber make their debut in this volume. His carefully reasoned arguments 
take the reader from elementary scaling arguments to sophisticated 
renormalization group results. It gives me great pleasure to welcome him 
as a contributor to FRONTIERS IN PHYSICS. 
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Preface 

During the Winter of 1983-1984, it occured to me that certain non-
equilibrium phenomena could be analysed using the renormalisation 
group. At that time, my only encounter with the renormalisation group 
had been in the contexts of critical phenomena and field theory, and 
like most condensed matter physicists, I thought that the renormalisation 
group was, at heart, concerned with "integrating out degrees of freedom'.' 
It was difficult to see the relevance of this to those non-equilibrium sys-
tems, where there is no partition function or generating functional to 
compute. Nevertheless, the feeling persisted that there should be a more 
general way of thinking about renormalisation group transformations, and 
eventually it became possible to put these ideas into practice. In writing 
these lecture notes, I have attempted to convey a perspective broader 
than that usually found in the literature. 

The volume before you is based upon a set of lectures that I have 
given to the physics graduate students at the University of Illinois at 
Urbana-Champaign. They form a one semester course on the topic of 
phase transitions and an introduction to the renormalisation group. In 
giving these lectures, I was guided by two objectives. The first was to 
explain as simply and as clearly as possible exactly why phase transitions 

1 



2 	 Preface 

occur, and to cut through some of the exaggerated awe that the subject 
inspires in the minds of many students. In particular, I wanted to avoid 
technicalities which hide the crux of the matter. My second objective was 
to show that there is nothing mysterious about the existence of critical 
exponents with 'anomalous' values. Even though Landau himself consid-
ered that the problem of second order phase transitions was one of the 
most important in theoretical physics, the actual solution to the problem 
is, in retrospect, really quite simple. I will have succeeded if the reader's 
response to the denouement is a vague feeling of disappointment! 

These lectures cover the elementary aspects of the physics of phase 
transitions and the renormalisation group. They are not intended to be 
either monographic or encyclopaedic. The choice of topics and order of 
presentation were chosen so as to instill a logical progression of ideas in 
the minds of the students. I also decided that these notes would show 
precisely "how things work!' Thus, I have eschewed both elegance and 
style in favour of explicit detail and directness, an approach which has 
proven to be popular and effective in the lecture room. Indeed, these notes 
are almost verbatim transcriptions of the original lectures. 

A further note about style is appropriate here. I have sprinkled the 
text with footnotes — a practice that is uncommon nowadays, possibly 
as a result of Noel Coward's remark that encountering a footnote is like 
having to go downstairs and answer the front door in the middle of mak-
ing love. Whilst I would be flattered to think that my prose style stands 
up to this analogy, I also feel that the alternative of flicking to the end of 
the chapter (or worse, the end of the book) is an interruption equivalent 
to searching the rooms of the house for an alarm clock that has just gone 
off. Generally speaking, the footnotes provide references to detailed expo-
sitions or review articles, and occasionally to original results. I make no 
claim to completeness; in most cases, cited articles were carefully chosen 
for their scientific or pedagogical value, rather than for the assignment of 
priorities. Thus I apologise in advance for the many worthy articles that 
were necessarily omitted, and hope that the reader will have no difficulty 
in tracking these down from the paper trail that I have given. 

A number of exercises have also been provided, which I consider to be 
an integral part of the original course. In particular, certain topics, where 
the development is rather technical and best appreciated in private, are 
not discussed in the text; instead, the reader is led carefully through the 
salient points in order, it is hoped, to assist the process of self-discovery. 
The exercises were, in some sense, enjoyed by the classes at Illinois; I 
strongly- urge the serious reader to attempt them. 
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I have written these notes keeping in mind a reader who wants to un-
derstand why things are done, what the results are, and what in principle 
can go wrong. These are rightly the concerns of both experimentalists 
and theorists, and the former will, I hope, not find themselves at a disad-
vantage when using these notes. I have assumed only a prior knowledge 
of statistical mechanics at the introductory graduate level, so the present 
treatment is reasonably self-contained. My emphasis and choice of topic is 
somewhat different from that of other treatments of phase transitions and 
the renormalisation group, with a number of topics making their debut 
in a book at this level; consequently, I hope that even readers with prior 
exposure to these topics will find something of value in these pages. 

I am too young to be amongst those who actually participated in the 
development of the renormalisation group in the theory of phase tran-
sitions. Some of what I know I learned from textbooks, original articles 
and from talking to friends and colleagues. In particular, I was fortunate 
enough to attend two lecture courses: one by John Cardy at the Uni-
versity of California at Santa Barbara, and another by Sandy Fetter at 
Stanford University. In preparing my own lectures, I was conscious of the 
pedagogical influence of these fine teachers. I owe an even greater debt 
of gratitude to Michael Wortis, who taught the course at Illinois before 
me. His style, approach and, occasionally, method of presentation have 
inevitably found their way into these notes. My own viewpoint on the 
renormalisation group has been influenced primarily by two people: G.I. 
Barenblatt and Yoshitsugu Oono. I wish to take this opportunity to thank 
them for their inspiration and collaboration respectively. It has also been 
my good fortune to count amongst my friends and collaborators, Paul 
Goldbart, with whom a number of ideas about disordered systems were 
developed. 

I am grateful to many people who have wittingly or unwittingly 
helped in the preparation of this book. To the students of Physics 464 
for their naive and hence difficult questions; to Alex Belic, Paul Gold-
bart, Byungchan Lee, Yoshi Oono, Kieran Mullen, Lin-Yuan Chen, Jing 
Shi, Fong Liu, Jan Engelbrecht and Martin Tarlie for suggesting improve-
ments on the original manuscript; to David Pines for encouraging me to 
write up these notes; to Cris Barnhart for braving TEX and typing some of 
the manuscript; to Larry Vance for rendering the figures; to Ansel Ander-
son, Head of the Physics Department at the University of Illinois for the 
opportunity to present this course; to the National Science Foundation 
for grant NSF-DMR-90-15791, which provided partial support for some 
of the results described in chapter 10; to the Alfred P. Sloan Foundation 



4 	 Preface 

for a Fellowship; and last, but not least, to Joan Campagnolo for her 
patience and understanding. 

In my opinion, the renormalisation group is one of the more profound 
discoveries in science, because it is a theory about theories. It has enabled 
physicists to become self-conscious about the way in which they construct 
physical theories, so that Dirac's dictum that we should seek the most 
beautiful or simplest equations acquires a meaningful and quantifiable 
aspect. Like thermodynamics, it will survive the post-quantum revolution, 
whatever and whenever that may be. Perhaps some reader of these notes 
will fire the first shot. 

Urbana, Illinois 	 Nigel Goldenfeld 
January, 1992 



CHAPTER 1 

Introduction 

1.1 SCALING AND DIMENSIONAL ANALYSIS 

The phenomena with which we shall be concerned all exhibit scaling. In 
its simplest form, this just means that two measurable quantities depend 
upon each other in a power-law fashion. A familiar example is Kepler's 
law, relating the radius R of a planet's circular orbit to the period T of 
the orbit: 

T a R312. 	(1.1) 
Another example, possibly not so familiar, is the formula for the phase 

speed c of waves on shallow water of depth h, neglecting surface tension 
and viscous effects: 

c2 = gh, 	(1.2) 
where g is the acceleration due to gravity. The scaling law in this example 
is c cc Nift. Formula (1.2) is only valid when the depth is small compared 
with the wavelength A, and the more general relation isl 

c2 =2 tank(  27rh) 	 (1.3) 

1  See virtually any text-book on fluid dynamics. A clear presentation is given by 
D.J. Acheson, Elementary Fluid Dynamics (Clarendon, Oxford, 1990), Chapter 3. 
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which indeed reduces to eqn. (1.2) when h << A. In this case, then, scaling 
occurs only approximately, but becomes more and more accurate in the 
limit h/A -4 0. 

Often, scaling laws can easily be deduced from dimensional analy-
sis. For example, in the water wave case, the only variables that c may 
depend upon in principle are g, h, A and the fluid density p. Using the 
notation [ ] to denote the dimensions of a given quantity, and the system 
of units mass-length-time M LT, we have: [g] = LT-2, [h] = [a] = L and 
[p] = ML-3  in three spatial dimensions. Thus 

c  = 00112 f  (70 , 	(1.4) 

where f is a function that cannot be determined by dimensional analysis. 
In the limit h/A -4 0, 

c 	(gh)1I2  f (0) cc 	(1.5) 

recovering the scaling law, apparently without requiring any detailed 
knowledge about fluid dynamics! 

Actually, this happy state of affairs is an illusion - we made a very 
strong assumption in going from eqn. (1.4) to eqn. (1.5), namely that the 
limit process was regular. Usually, this can only be justified properly by 
considerations other than dimensional analysis. This point is by no means 
obscure mathematical pedantry: in fact, the cases where the regularity 
assumption breaks down constitute the central topic of this book. 

The derivation presented above of the shallow water wave speed is 
somewhat deceptive for another, more mundane and less far-reaching rea-
son: in writing down eqn. (1.4), we were presented with a choice of which 
length to use in the prefactor of the function f. We could equally well 
have used A instead of h, leading to 

c  = (gA)1/2 (L1 ) 
	

(1.6) 

where f is another function to be determined. Now what happens in the 
limit h/A --4 0? It looks as if something has gone wrong! To proceed, recall 
that our purpose in taking the limit is to remove the dependence of c on 
A: our common sense intuition tells us that when A is "sufficiently large' 
it should not affect the result. The only way that A can cancel out of the 
formula (1.6) is if the function f has a square root behaviour for small 
values of its argument: 

"f(x) ,  x112  f(x) 	as x 	0, 	 (1.7) 
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where the function f is analytic as x 	0 and tends towards some well- 
defined limit f(0). In fact, f here is the function of eqn. (1.4), as we see 
by using the approximation (1.7) in eqn. (1.6); we do indeed obtain the 
correct result (1.5) for the wave speed. 

1.2 POWER LAWS IN STATISTICAL PHYSICS 

In the above examples, and in many other scaling laws, the power 
law, or the exponent is a rational fraction, often deduced from simple 
dimensional considerations. This partly accounts for the fact that the 
phenomena described are so well understood, and are taught in elementary 
physics courses. However, there is a broader class of phenomena where 
power-law behaviour occurs, but the exponent is not a simple fraction (as 
far as is known). This class of phenomena includes, but is by no means 
restricted to, phase transitions where there is a critical point. We shall 
shortly discuss precisely what we mean by this; but first, let us consider 
some examples. 

1.2.1 Liquid Gas Critical Point 

In figure (1.1) is sketched a portion of the phase diagram for a fluid. 
The axes are the temperature T and the density of the fluid p, and the 
curve is shown in the fixed pressure, P, plane. Below the critical or tran-
sition temperature, Tc, is the coexistence curve. This has the following 
interpretation. Below 	as density is increased at fixed temperature, it 
is not possible to pass from a gaseous phase to a liquid phase without 
passing through a regime where the container of the fluid contains a mix-
ture of both gas and liquid. The two-phase region has a manifestation in 
the thermodynamic properties of the fluid, which we will discuss later. 
Above the critical point, it is possible to pass continuously from a gas to 
a liquid as the density is increased at constant temperature. In this case, 
there is no density at which there is a coexisting mixture of liquid and gas 
in the container. Note that even starting below 7', it is always possible 
to pass from a liquid to a gas without passing through any two-phase 
region: one simply raises the temperature above 	reduces the density, 
and then lowers the temperature below T. This suggests that there is no 
real way to distinguish between a liquid and a gas. In fact, the question 
of how one identifies different phases of matter is one with which we shall 
be concerned in later chapters. 

Returning to figure (1.1), the interesting question to ask for the pur-
poses of the present discussion is: what is the shape of the coexistence 
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Figure 1.1 Phase diagram of a fluid at fixed pressure. 

curve near the critical point? Experimentally, for sulphurhexafluoride, it 
is found that2  

ip+ — 	cx  IT — Tcio.327±o.00s 	 (1.8) 

is the shape of the curve near the critical point, where p±(T) are the values 
of the density at coexistence on the two branches of the coexistence curve 
below Tc, as shown in figure (1.1). The number 0.327 ± 0.006 is an ex-
ample of a critical exponent, and does not depend upon the particular 
fluid system studied. Although you might reasonably have expected that 
this exponent would be different for the coexistence curve of a different 
substance, this is not in fact the case! For example, the same measure-
ment on 3He yields a value for the critical exponent3  of 0.321 ± 0.006. 
In both of the results quoted, the error bars correspond to two standard 
deviations The critical exponent is not obviously a simple rational frac-
tion, and is clearly different from the value 1/2, which, as we will see 
later, might have been expected from dimensional analysis. In fact, it was 
the overwhelming experimental evidence that this exponent was different 
from 1/2 that forced some physicists in the 1930's to realise that there 
was a deep problem lurking in seemingly unimportant exponents. 

2 The data for the liquid gas critical point of sulphurhexafluoride are taken from 
M. Ley-Koo and M.S. Green, Phys. Rev. A 16, 2483 (1977). 

3 The 3He data are from C. Pittman, T. Doiron and H. Meyer, Phys. Rev. B 20, 3678 
(1979). 

4 A useful summary of the experimental situation is given by J.V. Sengers in Phase 
Transitions, Proceedings of the CarOse Summer School 1980 (Plenum, New York, 
1982), p. 95. 
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1.2.2 Magnetic Critical Point 
A second example is the critical point of a ferromagnet. A magnet 

may be regarded as consisting of a set of magnetic dipoles residing on the 
vertices of a crystal lattice. We will often refer to the magnetic dipoles as 
spins. The spins are able to exchange energy through interactions between 
themselves, as well as between themselves and other degrees of freedom 
of the crystal lattice (e.g. via spin-orbit coupling). For systems in equilib-
rium, one can define a temperature T. If one waits a sufficiently long time, 
equilibrium is established between the lattice and the spins, and both sets 
of degrees of freedom are described by a single temperature T. On the 
other hand, the spins can come into equilibrium between themselves well 
before they come into equilibrium with the lattice: in this case, the spin 
degrees of freedom and the lattice degrees of freedom may have different 
temperatures. Here, we ignore such dynamical questions, and assume that 
we are dealing with a system described by a single temperature T. 

At high temperatures and zero external field, the system is in the 
paramagnetic phase: following the time evolution of any spin would 
reveal that it points in all directions with equal frequency. Thus, no di-
rection is singled out at any given time when considering all of the spins 
in the system and the net magnetic moment is zero. 

Below a critical temperature, Tc, however, the spins tend to align 
along a particular direction in space, even in the absence of an external 
field. In this case, there is a net magnetisation, M(T), and the system 
is in the ferromagnetic phase. The onset of this behaviour is a con-
tinuous phase transition: the magnetisation rises continuously from 
zero as the temperature is reduced below Tc, as sketched in figure (1.2). 
The magnetisation is zero above the transition and is non-zero below the 
transition temperature. A quantity which varies in this way is referred to 
as an order parameter. 

The question naturally arises as to why the system should order along 
any particular direction: what is special about the direction? This question 
is far from being naive, and we shall discuss it in detail later. 

In certain systems, the actual dipole interactions between the atoms 
on the lattice restrict the spins to point parallel or anti-parallel to one 
particular direction, which we shall take to be the z-axis. In these sys-
tems, known as Ising ferromagnets , each spin cannot rotate through 
all possible orientations, but instead can only point along the +z or —z 
directions. The Ising ferromagnet is therefore relatively simple to study, 
and we will devote considerable attention to it in these notes. The sim-
plicity is deceptive, however. What may be simple to state may not be 
simple to solve! 
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Tc  

Figure 1.2 Onset of magnetisation in an Ising ferromagnet. 

The interaction energy between neighbouring spins in an Ising ferro-
magnet is lowest when neighbouring spins point in the same direction. 
However, there is another class of systems, known as Ising antiferro-
magnets, in which the sign of the interaction energy between neighbour-
ing spins is such that the energy is lowered when neighbouring spins point 
in opposite directions. We will later see that the thermodynamics of an-
tiferromagnets with certain crystal lattices in zero applied magnetic field 
is identical to the thermodynamics of ferromagnets. 

The onset of magnetisation in the three dimensional Ising antiferro-
magnet DyA1O3, in the limit of zero applied magnetic field, exhibits the 
following behavior experimentally:5  

M 	T)0.3n±o.005 	(1.9) 

This result is valid in the limiting case as T —+ T, from below, and is ex-
pected to apply to Ising ferromagnets too. As the temperature is reduced 
below the critical temperature, significant deviations from this result de-
velop. The critical exponent is again not obviously a rational fraction, 
and furthermore seems to be the same as that for the liquid-gas system, 
within the experimental precision. 

5  The experimental results for the critical point of an antiferromagnet were taken 
from L.M. Holmes, L.G. Van Uitert and G.W. Hull, Sol. State Commun. 9, 1373 (1971). 
For an exhaustive summary comparing experimental results with predictions based on 
idealised models of magnetic systems, see L.J. de Jongh and A.R. Miedema, Adv. 
Phys. 23, 1 (1974). 
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Figure 1.3 (a) Phase diagram of 4He; (b) Heat capacity as a function of temperature 
at the A-transition, for fixed pressure. 

1.2.3 Superfluid (A) Transition in 4He 
Part of the phase diagram for 4He is sketched in figure (1.3a). For 

a range of pressures from near zero to about 25 atmospheres, liquid he-
lium undergoes a continuous transition to a superfluid at a temperature 
of about 2 K. In the superfluid state, 4He exhibits a number of unusual 
properties, including dissipationless flow through fine capillary tubes. The 
transition to the superfluid state is sometimes known as the A-transition, 
due to the shape of the heat capacity curve, C, as a function of tempera-
ture, shown in figure (1.3b). The transition temperature is usually known 
as TA, and its precise value depends upon the pressure. 

The best fit to the heat capacity data near the transitions  is found to 
be 

C oc ITA T10.013±0.003. (1.10) 

This is an experiment where great precision is possible for a variety of 
technical reasons, and there is little doubt that the critical exponent has 
the sign given. This means that the heat capacity curve is actually a 
cusp, although for many years it was thought that the heat capacity 
actually exhibited a divergence at the A-transition. Indeed, to a good 

6  High resolution experiments on the A-transition are described in J.A. Lipa and 
T.C.P. Chiu Phys. Rev. Lett. 51, 2291 (1983). 

	—T 
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approximation, the behaviour of the heat capacity is logarithmic, and 
in many books and articles the A-transition is often described by the 
formulae 

with A, A', B and B' being temperature independent constants. Expres-
sions (1.10) and (1.11) resemble one another when plotted on graph paper 
over a limited temperature range, as can be seen using the identity 

xn = exp(n log x) P.1 1 + n log x 	(1.12) 

where the approximation is valid if x is not too small and n << 1. In 
the high accuracy experiments leading to the result quoted in equation 
(1.10), IT - TA  /TA  ranges from 10-3  to 10-8, and deviations from the 
logarithmic approximation are discernible. 

1.2.4 Self-Avoiding Random Walk 
Consider the root mean square distance, R, travelled by a random 

walker after N steps. By root mean square, we imply that an average has 
been taken over the probability distribution of the walks. Suppose that 
we now require that the probability distribution does not permit the walk 
to intersect itself, but otherwise the walks are random. This is sometimes 
taken to be a minimal model of a polymer chain in solution, because two 
molecules making up the polymer cannot occupy the same point in space. 
Such a walk is called a self-avoiding walk. In this case, it is found that 
in three dimensions the simple scaling law for a random walker is changed 
from R a .1/1r, and becomes 

N0.586±0.004 	 (1.13) 

as N 	co. The claim is that this formula applies to both a real iso- 
lated polymer in solution and a mathematical self-avoiding walk. If this 
is true, then the molecular structure of the polymer and the various en-
ergies of interaction between monomers (repeat units) of the polymer do 
not seem to influence the scaling behaviour. The exponent quoted in equa-
tion (1.13) was obtained from experiment on a dilute polymer solution! 

The experimental determination of the scaling of R for polymers is reported in 
J.P. Cotton, J. Physique Lett. (Paris) 41, L231 (1980). The RG calculations for the 

same quantity were performed by J.C. Le Guillou and J. Zinn-Justin, J. Physique Lett. 
(Paris) 50, 1365 (1989). 

C 	
A log(T - TA) + B, T > TA 

A' log(TA - T)-F B', T < TA 
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Figure 1.4 Viscosity of a binary fluid near the critical point 

Renormalisation group (RG) calculations give a value for the expo-
nent of 0.5880 ± 0.0015, where the uncertainties derive from the mathe-
matical technique used to resum the asymptotic series given by the RG. 
Indeed, it does seem that the formula is completely independent of the 
chemistry, and only depends upon the 'spaghetti' nature of the polymer. 

1.2.5 Dynamic Critical Phenomena 
The examples given above have all exhibited non-trivial power laws 

in quantities that are unrelated to the time evolution of the physical sys-
tem in question. For example, magnetisation is a thermodynamic quan-
tity, computed and (in principle) measured in equilibrium. However, non-
trivial power laws may also be exhibited by transport coefficients in a 
system near a critical point. A transport coefficient is a phenomenological 
parameter relating a current to a driving force. For example, Ohm's Law, 

j = aE, 	 (1.14) 

relates the electric current density j to the electric field E which drives the 
current, through the conductivity tensor or. Other examples of transport 
coefficients include diffusion coefficients and viscosity. 

Very close to the critical point of a binary fluid mixture, the shear vis-
cosity, ris, is found to diverge weakly with temperature, as sketched in fig-
ure (1.4). For example, the shear viscosity of nitroethane-3-methylpentane 
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is found to behave above 7', as8  

77s °C 	Tc 

(T  _ T  —0.03±0.01 

This behaviour occurs over a range of temperatures 10-5  < (T -Tc)171c < 
10-2  where equilibrium thermodynamic quantities also exhibit scaling. 
Although viscosity is usually thought of as being a property of a flow-
ing fluid, i.e. one not in equilibrium, it is generally believed that close 
to equilibrium, transport properties can be related to purely equilibrium 
quantities. This topic is generally known as linear response theory. 

1.3 SOME IMPORTANT QUESTIONS 

These notes are primarily concerned with phase transitions where 
there is no generation of latent heat. In other words, I shall, for the most 
part omit discussion of what are called first order phase transitions 
in the Ehrenfest classification. Ehrenfest proposed that phase transi-
tions could be classified as 'nth  order' if any nth  derivative of the free 
energy with respect to any of its arguments yields a discontinuity at the 
phase transition. The phenomena which we will describe are often called 
critical phenomena and occur at second order phase transitions, 
although this name is inappropriate, because the Ehrenfest classification 
is not correct. I prefer the use of the term continuous phase transition. 
Ehrenfest's classification fails, because at the time that it was formulated, 
it was not known that thermodynamic quantities such as the specific heat 
actually diverge at continuous transitions, rather than exhibiting a sim-
ple discontinuity, as the Ehrenfest classification implies. We will see in 
future chapters that this failure is related to the failure of the applica-
bility of mean field theory, as exemplified by the Weiss theory of 
ferromagnetism and the Van der Waals equation for fluids. 

Power law behavior at a critical point, as in examples (1) and (2) of the 
previous section, is not just restricted to the quantities 1p+  -p_I and M. In 
fact, we shall see that many different observable quantities exhibit scaling 
behaviour and have associated critical exponents. These quantities can 
be placed in two categories. The first set of quantities are thermodynamic 

8  The divergence of the shear viscosity near the critical point was measured by B.C. 
Tsai and D. McIntyre, J. Chem. Phys. 60, 937 (1974). Further discussion of this topic 
may be found in the article by J.V. Sengers mentioned in the footnote on page 4. A 
review on the topic of dynamic critical phenomena is given by P.C. Hohenberg and B.I. 
Halperin, Rev. Mod. Phys. 49, 435 (1977). 

(1.15) 
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variables, such as the specific heat. The second set characterise spatial 
ordering in a system and address the question: how does, for example, 
the local magnetic moment vary from point to point in a ferromagnet? 
The examples which we have mentioned above prompt us to consider 
many questions, amongst which the most interesting are perhaps: 

Question 0: Why do phase transitions occur at all? 
In statistical mechanics, thermodynamics arises from the free energy, 

F, and its derivatives, given by Gibbs' formula 

e-FIkBT = Tr e-HlkBT 	 (1.16) 

where kB is Boltzmann's constant and T is the temperature. H is the 
Hamiltonian, and Tr denotes a sum over all degrees of freedom mentioned 
in H. Since the Hamiltonian will usually be a non-singular function of the 
degrees of freedom, the right hand side of equation (1.16) — the partition 
function — is nothing more than a sum of terms, each of which is the 
exponential of an analytic function of the parameters in the Hamiltonian. 
How, then, can such a sum give rise to non-analytic behaviour, of the sort 
described in the previous section? Is it even clear a priori that a single 
partition function can describe multiple phases? 

Question 1: How can we calculate the phase diagram of a system as we 
change the external parameters? 

These external parameters, as well as the temperature, enter the free 
energy through the Hamiltonian, via equation (1.16). Anticipating the an-
swer to the last question posed in the previous paragraph, it is sometimes 
forgotten that apparently different states of matter, such as liquid and 
solid, are actually described by the same Hamiltonian. Simply changing 
T in equation (1.16) can cause a change of state. 

Question 2: How do we compute the exponents which are observed at a 
continuous transition? 

Even when we have understood, in principle, how it is that non-
analytic or critical behaviour can arise, the challenge remains to account 
for the precise values of the critical exponents. Mean field theories, built 
from the foundations laid by Van der Waals and Weiss, always lead to 
exponents given by rational fractions. However, the observed values do 
not seem to agree with these predictions. 

The discrepancy between the mean field theory prediction for the 
shape of the liquid - gas coexistence curve, eqn. (1.8), which gives an 



16 	 1 Introduction 

exponent of 1/2, and the observed value of about 0.325 is far from in-
significant. Usually in physics, we are satisfied with a qualitative under-
standing of a given phenomenon together with a reasonable estimate of 
the quantitative consequences, always with the assurance that a more re-
fined calculation would improve the quantitative predictions. Why then 
is the difference between 0.5 and 0.35 of such apparent significance? The 
point is that until about twenty-five years ago or so, it was not possible, 
even in principle, to account for this discrepancy. The numerical discrep-
ancy of 30% in a critical exponent is but the tip of a well-hidden iceberg. 
Classical physics makes an assumption so subtle that it was not even 
recognised explicitly for many years. It is no exaggeration to say that in 
solving this problem, a new way of looking at physics emerged, which has 
infused condensed matter physics and high energy physics. In recognition 
of this, K.G. Wilson, the principle architect of the renormalisation group 
approach, was awarded the 1982 Nobel Prize in physics. 

We shall shortly see that the critical exponents are often indepen-
dent of the specific system under consideration. For example, the critical 
exponent # for the liquid-gas critical point 

	

IP+ — 	cc 	— 	 (1.17) 

and the exponent ,8  for the ferromagnetic critical point 

M 	(Tc  — 7)3 	(1.18) 

are the same within the accuracy of the experiments! The fact that two 
apparently different physical systems might share precisely the same sets 
of critical exponents is known as universality. Thus, we ask 

Question 3: Why does universality occur, and what are the factors that 
determine which set of phenomena have the same critical exponents? 

Phenomena with the same set of critical exponents are said to form 
a universality class. The usefulness of the concept of universality class 
lies in the fact that, in general, members of a universality class have only 
three things in common: the symmetry group of the Hamiltonian (not 
the lattice, if one is present), the dimensionality, and whether or not the 
forces are short-ranged. 

1.4 HISTORICAL DEVELOPMENT 

Complete answers to most of the questions above were not known 20 
years ago. In these lecture notes, we shall follow approximately the his-
torical development of the subject, although we will start with a precise 
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statistical mechanical definition of phase transition, emphasising the im-
portant notion of the thermodynamic limit, in which the system size is 
taken to be infinitely large, and indicating how, strictly speaking, phase 
transitions arise only in this limit. 

Of central importance to the development of the subject were studies 
of two physical systems, the liquid-gas system and the ferromagnet, at the 
classical level of description. The term 'classical' is not used to indicate 
an alternative to quantum theory; instead, it signifies that the theory 
in question ignores thermal fluctuations, an approximation used in all 
but a few exactly solvable cases, until the advent of the renormalisation 
group. In fact, we shall see that these classical theories, due to Van der 
Waals and Weiss respectively, are actually rather good in many ways, 
and already exhibit some (but not all) qualitatively correct features of 
phase transitions. In our presentation, we will also expose some of the 
similarities between these two apparently different phenomena, showing 
how the mathematical descriptions of these phenomena become identical 
near a critical point. 

This observation forms the basis of Landau's theory of phase 
transitions, which is the most succinct encapsulation of the classical 
approach. However, we will present Landau theory in a way which an-
ticipates the developments that follow. In fact, we shall see that classical 
theories, and thus Landau's theory, are mean field theories; a physi-
cal variable such as the magnetisation is replaced by its average value, 
and fluctuations about that value are ignored. It is possible to use Lan-
dau theory to estimate the importance of fluctuations, and thus to check 
on the self-consistency of the theory. However, it is found that near a 
critical point, fluctuations are not negligible, and thus the theory is not 
self-consistent. Landau theory contains within it the seeds of its own de-
struction! 

The next significant step was the development of the notion of scaling 
laws, first arrived at on a phenomenological basis by B. Widom. We will 
see that the equation of state of a physical system near to a critical point 
obeys what appears to be an analogue of the law of corresponding 
states, encountered in the equation of state (such as that due to Van der 
Waals) for a fluid. In the latter case, however, the law of corresponding 
states is always valid, not just near to a critical point. In the context of 
magnetic systems, the equation of state relates the magnetisation, M, the 
temperature T, and the external magnetic field, H: 

IT —T,T, 
H = f(M,t), 	t = 	 (1.19) 
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Ostensibly, f is a function of two variables. Nevertheless, Widom dis-
covered that near a critical point, the equation of state may be written 
as 	

H = M5  (—t 
	

(1.20) 

with 4 being a function of just one variable. The exponents 45 and a  ap-
pear in equation (1.20) in accord with convention, and Widom's striking 
discovery was that b., 13 and 71 can be chosen so that the experimental 
data from different materials (Fe, Ni, ...) all satisfy equation (1.20) with 
the same function 4! Furthermore, it was noticed that equation (1.20) 
implies a relationship between the critical exponents for different thermo-
dynamic quantities, such as the specific heat, the susceptibility and the 
magnetisation. 

Where do scaling laws come from? L.P. Kadanoff proposed a simple, 
intuitive explanation, namely that a relation of the form of (1.20) follows 
if one assumes that near a critical point, the system 'looks the same on 
all length scales'. We shall formulate this notion a bit more precisely later 
and see why it is, in fact, not really quite correct. Kadanoff's argument 
is important, because it provides the basic physical insight on which the 
technique of the renormalisation group (RG) is built; Kadanoff almost 
certainly was aware of the flaws in his argument, but nevertheless had the 
intellectual courage to propose it anyway. 

The modern era began with a series of seminal papers by K.G. Wil-
son in 1971, in which the renormalisation group was developed and ex-
plained in the contexts of both condensed matter physics and high energy 
physics. These and subsequent papers by Wilson initiated an explosion of 
activity which continued unabated for a decade. Many of the applications 
of the renormalisation group utilised perturbation expansion techniques, 
with such small parameters as the variables c = 4 — d, where d is the 
dimensionality of space and 1/n, where n is the number of components 
of the order parameter (i.e., the magnetisation, which is a vector, has 3 
components). Today, some of this body of work has become part of the 
mainstream of physics. 

At the time of writing, it is probably fair to say that the frontiers of 
renormalisation group physics have shifted away from phase transitions 
and field theory, towards non-equilibrium phenomena. One active av-
enue of research is the study of dynamical phenomena where there is a 
fluctuating noise source present. An example is the growth of an interface 
by the random deposition of atoms. Such an interface is rough, and will 
exhibit height fluctuations about its average position. The 1W and other 
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methods, originally developed to treat critical phenomena, have been used 
to study how these fluctuations scale in both space and time. 

Another line of inquiry is the dynamics of systems approaching an 
equilibrium state, but still not close enough to equilibrium that linear 
response theory is valid. In these systems, spatial correlations sometimes 
exhibit scaling behaviour in time. One well-known example is that of the 
phase separation of a binary alloy below the critical point, where the 
time dependent X-ray scattering intensity at wavenumber k, S(k, t), is 
found to obey a relation of the form 

S(k,t) = tags  11(kt4') 	(1.21) 

with ck close, if not exactly equal, to 1/3, and d being the spatial dimen-
sionality. It is not yet well-understood how to apply the RG to pattern 
formation problems of this type. 

In another set of problems described by partial differential equations 
without noise present, a system may be well-described by a similarity 
solution of the form 

u(x,t) N ef(xt13), 	as t —+ oo, 	 (1.22) 

where u is some observable and x and t are space and time respectively. In 
some cases, the exponents a and ,0 characterising the similarity solution 
may not be simply obtained by dimensional analysis; nevertheless, the 
RG can be successfully used to solve these problems too. Examples of 
such problems arise in many areas of fluid mechanics, for example, and 
this new topic will be introduced in chapter 10. 

The condensed matter physics literature contains two versions of the 
RG: the Gell-Mann—Low RG and the Wilson RG. In critical phenom-
ena, the use of the former is based upon perturbation theory, whilst the 
latter has a direct geometrical interpretation and is in principle, non-
perturbative. Indeed, it was the introduction of Wilson's method in 1971 
which began the modern era of the RG. The connection between the two 
versions is by no means obvious. We shall present the Gell-Mann—Low 
RG when we explain renormalisation in chapter 10, in the context of phe-
nomena far from equilibrium; there we will also mention the connection 
with Wilson's formulation of RG. We will see that renormalisation has a 
direct physical interpretation, and may be easily understood without the 
technical complications of quantum field theory. 
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EXERCISES 

Exercise 1-1 
Dimensional analysis (DA) is often a powerful tool in physics. This 

question requires you to use dimensional arguments to solve a couple of 
interesting problems. DA is usually used in two ways: (1) The fundamental 
theorem of DA asserts9  that in any physical problem involving a number of 
dimensionful quantities, the relationship between them can be expressed 
by forming all possible independent dimensionless quantities, denoted by 
II, 111, 112, ..., II, Then the solution to the physical problem is of the 
form II = f(I11  ... Iln,), where f is a function of n variables. (2) Sometimes 
there is only one dimensionless combination of variables relevant to a given 
problem. Then (1) implies II = constant. 
(a) By noting that the area of a right-angled triangle can be expressed 

in terms of the hypotenuse and (e.g.) the smaller of the acute angles, 
prove Pythagoras' theorem using dimensional analysis. You will find 
it helpful to construct a well-chosen line in the right-angled triangle. 
Note: the whole point of dimensional analysis is that you do NOT 
need to solve for the functional form of the solution to a given prob-
lem. Thus, in this question, you must pretend that you do not know 
trigonometry. 

(b) Now consider the case of Riemannian or Lobachevskian geometry (i.e. 
the triangle is drawn on a curved surface such as a riding saddle or a 
football). What happens in this case? 

Exercise 1-2 
In 1947, a sequence of photographs of the first atomic bomb explosion 

in New Mexico in 1945 were published in Life magazine. The photographs 
show the expansion of the shock wave caused by the blast at successive 
times in ms. From the photographs, one can read off the radius of the 
shock wave as a function of time: the result is shown in the accompanying 
table. Assuming that the motion of the shock is unaffected by the presence 
of the ground, and that the motion is determined only by the energy 
released in the blast E and the density of the undisturbed air into which 
the shock is propagating, p, derive a scaling law for the radius of the 
fireball as a function of time. Use the data from the photographs to test 
your scaling law and hence deduce the yield of the blast. You must test 

9  First enunciated apparently by E. Buckingham in a delightful paper (see especially 
the concluding paragraph), Phys. Rev. 4, 345 (1914). Fourier is usually attributed with 
the principle that every term in a physical equation must have the same dimensions. 
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Table 1.1 RADIUS R OF BLAST 
WAVE AFTER TIME T 

T/msec R/m 

0.10 11.1 
0.24 19.9 
0.38 25.4 
0.52 28.8 
0.66 31.9 
0.80 34.2 
0.94 36.3 
1.08 38.9 
1.22 41.0 
1.36 42.8 
1.50 44.4 
1.65 46.0 
1.79 46.9 
1.93 48.7 
3.26 59.0 
3.53 61.1 
3.80 62.9 
4.07 64.3 
4.34 65.6 
4.61 67.3 
15.0 106.5 
25.0 130.0 
34.0 145.0 
53.0 175.0 
62.0 185.0 

your scaling law by plotting a graph. You should consider carefully and 
then explain what is the most useful graph to plot. You should assume 
that all numerical factors are of order unityl° Although the photographs 
were declassified in 1947, the yield of the explosion was to remain classified 
until several years later. 

1°  For a detailed analysis and discussion of the data, see G.I. Taylor, Proc. Roy. Soc. 
A 201, 175 {1950). 
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CHAPTER 2 

How Phase Transitions 
Occur in Principle 

The purpose of this chapter is to explain how phase transitions can occur 
in principle. Thus, we shall define precisely what we mean by a phase 
transition, and examine how it is possible for a phase transition to occur 
in a simple model of a magnet — the Ising model. The Ising model is the 
drosophila of statistical mechanics, and we will not shrink from using it 
as an example to illustrate many of the general ideas that we shall de-
velop. We shall also explore some of the wider and more complex issues 
associated with phase transitions, using other examples. In particular, we 
shall focus on ergodicity breaking, using disordered systems as an exam-
ple. Throughout this chapter, we shall aim to be descriptive: our goal is 
to examine the possibilities that may occur, rather than to show how they 
occur in practice. The following chapter will present some calculational 
techniques whose results illustrate the general considerations given here. 

2.1 REVIEW OF STATISTICAL MECHANICS 

Let us now review the basic results of statistical mechanics, but in 
a rather formal way. The formality is actually only cosmetic, but gives 
us a convenient general notation to cover all sorts of different systems. 
This will turn out to be essential, because we shall later wish to consider 

23 
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the (formal) space of all possible Hamiltonians. In fact, when we use the 
RG, we will be lead to consider dynamical systems in the space of all 
possible Hamiltonians. 

The goal of statistical mechanics is to compute the partition function 
Z. We specify the system of interest as some sample region Si, in which is 
defined the Hamiltonian Ho. The volume of the region is V(S2) and the 
surface area is S(S2). Often it will be convenient to think of our system 
as having some characteristic linear dimension L, so that V(S2) oc Ld, 
S(Si) tx Ld-1, where d is the dimensionality of the system. Unless oth-
erwise stated, we will only consider classical statistical mechanics here; 
for reasons that will become clear, quantum statistical mechanics is not 
required to describe the vicinity of a phase transition, even if the under-
lying phenomenon is quantum mechanical (as in superconductivity, for 
example). 

Usually, there will be boundary conditions specified on the bound-
ary of ft. Often these will be periodic or hard wall (i.e. zero flux of particles 
through a wall). The system may exist as a continuum (e.g. a fluid) or on 
a lattice (e.g. a magnet); for now, V(11) is finite. 

We write the Hamiltonian for the system as 

kBT 
	E Kn On 	 (2.1) 

n 

where Kn  are the coupling constants and the On  are combinations of 
the dynamical degrees of freedom, which are summed over in the partition 
function. We shall sometimes refer to the On  as local operators. The so-
called coupling constants Kn  are the external parameters, such as fields, 
exchange interaction parameters, temperature ... So, for example, if we 
are dealing with a magnet, the degrees of freedom are the (vector) spins 
on the lattice sites Si, where 1 < i < N(S2). Thus the On  are built out 
of combinations of the Si: i.e. 01  = Ei Si, 02 = 	Si • Si, etc. In this 
context, 

	

Tr  E 
	

(2.2) 
S1 S2 S3 	SN(n) 

where each sum is over all possible values that each Si can take. 
A simple example of a term in Hn is that responsible for the Zeeman 

effect. The coupling constant in this context is the external field H, and 
the corresponding local operator is the magnetic moment at a lattice site 
i, Si. Then the contribution of these terms to 1-10 is — Ei  H • Si. 

The partition function itself is given by 

Z[{Kn}] a-  Tr e—°11n, 	where /3 = 1/kBT 	(2.3) 
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and the operation Tr means "sum over all degrees of freedom, the sum 
including every possible value of each degree of freedom!' After carrying 
out the trace, Z depends on all of the Kn  as indicated by the notation 
[...]. We shall sometimes indicate the dependence of a quantity on the 
entire set of coupling constants in a compact way: [K] [{Kn }]. Thus, for 
example, the partition function might be written as Z[K]. We shall also 
have be very careful about what Tr means when we discuss spontaneous 
symmetry breaking. 

The free energy is defined by 

FoRK,JJ = -kBT log Zn 	 (2.4) 

and information on the thermodynamics of the system ft is contained in 
the derivatives afb/OK„, 0211-1/0KnOKm, .. which include bulk effects, 
surface effects, and finite - size effects. However, at this stage, where n is 
finite, there is no information about phase transitions or phases. 

2.2 THE THERMODYNAMIC LIMIT 

Experience tells us that the free energy is extensive for a large system: 
Ffi CC V(S1). Thus, we expect that for a finite system, we can write 

= V(fl)fb S(11)f3  0(Ld-2), 	 (2.5) 

where fb is the bulk free energy per unit volume or bulk free energy 
density and h is the surface free energy per unit area. We can give 
a precise definition of these important quantitites as follows: 

fb[K] = lim lb [K] 	 (2.6) 
V(Si)— co V(S2) 

when the limit exists and is independent of St. For a system defined on a 
lattice, with N(Si) lattice sites, the bulk free energy per site is 

fb[K] = lim 	 (2.7) 
N(f1)—+oo N(a) 

when the limit exists and is independent of ft. The bulk free energy fb[K] 
describes extensive thermodynamic behaviour (proportional to V(0)) but 
does not describe surface or finite size behaviour. This information may 
be computed from the surface free energy 

l'a[K] - v(n)fb[K]  
h[K] 	lim 	 (2.8) 

S(11)--.00 	S(S2) 
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when the limit exists and is independent of O. 
The limit in eqns. (2.6), (2.7) and (2.8) is known as the thermo-

dynamic limit. Sometimes, an auxiliary constraint is imposed simul-
taneously with the limit: for example, in fluid systems, taking the limit 
V(St) —> oo is senseless unless one simultaneously takes the limit that the 
number of particles N(1/) in the system also tends to infinity, in such a 
way that the density N(S/)/V(R) stays constant. We will see that the 
concepts of phase and and phase transition are only sharply defined in 
this limit. 

The existence of the thermodynamic limit is not trivial. In order for 
a uniform bulk behaviour to exist, the forces in the system must satisfy 
certain properties, and the thermodynamic limit must be taken carefully. 
It is instructive to consider how the thermodynamic limit can fail to exist, 
firstly because the physics will eventually give us some insight about phase 
transitions, and secondly, because we will see a very useful trick, which 
we will employ many times in these notes. 

2.2.1 Thermodynamic Limit in a Charged System 

Let us consider the energy at T = 0 of a system of uniform charge den-
sity p in 3 dimensions with an interaction potential between two particles 
separated by a distance r given by Coulomb's Law: 

U(r) = A/r, 	 (2.9) 

with A being a constant. For a spherical system of radius R, the energy 
E is given by 

E(R) = JR  Orr3p) • —A  • zirr2p dr. 

	

o 3 	
(2.10) 

In this expression, we have used the fact that in 3 dimensions for inverse 
square law forces, the charge can be considered to reside at the center of 
the sphere (Gauss' Law) and we have used the fact that charge outside the 
shell of thickness dr at radius r does not contribute to the electrostatic 
energy of the shell. Doing the integral we find 

(4702  2 ris 

	

E(R) = 	
15 

p IL 	 (2.11) 

and so the energy per unit volume is 

E(R) 4rA 2 27, 
Eb   

V (R) — 5 ' 
(2.12) 
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which diverges as R 	oo. We conclude that inverse square law forces, 
such as gravity and electrostatics are too long-ranged to permit thermo-
dynamic behaviour. This is a consequence of the fact that we have only 
allowed for charge of one sign. If both positive and negative charges are 
present, then the force law is no longer long ranged. In fact, if the charges 
are mobile, then the phenomenon of screening occurs, and the interac-
tion potential changes from 1/r to exp{ ---r/PD}/r where ID is the Debye 
screening length, which depends on the density of positive and negative 
charge in the system. 

In fact, it is not even obvious that a system of an equal number N 
of oppositely charged point particles is stable against collapse; if this oc-
cured, the question of the existence of the thermodynamic limit would be 
moot. It turns out that to prevent collapse and obtain a sensible thermo-
dynamic limit requires quantum mechanics, and furthermore, at least 
one of the species of particles must be a fermion. Without the exclusion 
principle, the ground state energy of the system diverges as N715  and 
the thermodynamic limit is not well-defined! 

2.2.2 Thermodynamic Limit for Power Law Interactions 

It is instructive to repeat the above calculation, for an interaction 
potential U(r) = Ale in d-dimensions. For this more general case, Gauss' 
Law does not apply, and we make progress by using a simple trick which 
we will encounter often in the study of critical phenomena. Expression 
(2.10) becomes 

1 E(R) = 
2 
- ddrddr' p(r)U(r - r')p(r') 	(2.13) 

where p(r) is the charge density at r and SI is a d-dimensional sphere of 
radius R. For a uniform system, p(r) = p and the integral becomes 

„ 	

Jr 

2 

E(R) = A1= 
2 
- ddrddr' 	1 	 (2.14) 

- 
Make the change of variables r = R x; r' = R y and n becomes the unit 
sphere. Then we can simply extract the dependence on R: 

E(R) - -Ap2 	RdddxRdddy 	 
IRx - 

1

R 2 u.s. 	 A('  

=2 
 Ap2R2d.-0- 	 (2.15) 

A clear and accessible discussion of the stability of matter may be found in 
E. Lieb, Rev. Mod. Phys. 48, 553 (1976). 
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where u.s. denotes integration over the unit sphere, and C is a constant 
independent of R: 

(2.16) 

Eb - E(R) = Ap2CR2d-' 
N

V (R) 	2VdRd  
where Vd is the volume of a unit sphere in d dimensions; we shall also 
denote the surface area of the unit sphere by Sd. In the limit R oo, we 
see that the thermodynamic limit is only well defined if and only if a > d. 
We shall say more below about the case a = d. 

In fact, we should be a little more careful, because the integral over 
the unit sphere represented by C may not converge. The problem arises 
in principle when r r' for a > d, since the singularity of the integrand 
of eqn. (2.14) is not integrable. This does not represent a serious problem 
in practice, because the charges may be considered either to reside on a 
lattice of spacing a, or if they are mobile in a continuum, to have a hard-
core repulsion at a radius a. In either case, the interaction U(r) ti  r'° 
only applies for r > a. The integral for C in eqn. (2.16) can be examined 
by making the change of variables 

u = x - y 
1 v = 
2
- (x + y) 	(2.19) 

for which the Jacobian is unity. The integral over v simply gives Vd, 
because the integrand is independent of v. Thus we get 

dS d 1 
C = Vd 	S dud-1 du = V - a V. r id—a 

, for d a 
aIR U d  

and 

(2.20) 

Eb = Ap2Sd Rd' (1 (al R)d-u) , for d a. 	(2.21) 
2(d - a) 

With this final, improved calculation of the existence of the thermody-
namic limit, we can address the question of what happens when a = d. In 
equation (2.20), the inner integral yields log(R/a), so that as R oo for 
fixed a, the bulk energy per unit volume Eb diverges. Thus, as advertised, 
in this example, the thermodynamic limit exists only for a > d. 

C 	ddxddy 	. 
1 

U.S. 	Ix — Ylu 
Thus 

(2.17) 

(2.18) 
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2.3 PHASE BOUNDARIES AND PHASE TRANSITIONS 

When fb[K] exists, then a precise definition of a phase boundary 
follows. Let us suppose that there are D coupling constants. The axes of 
the phase diagram are K1, K2, 	KD, and hence the dimension of 
the phase diagram is D. As a function of [K], fb[K] is analytic almost ev-
erywhere. The possible non-analyticities of fb[K] are points, lines, planes, 
hyperplanes, etc. in the phase diagram. These singular loci have a di-
mensionality associated with them (D, = 0, 1, 2, ... respectively), and the 
important invariant for each type of singular locus is the codimension, 
C: 

C 	D — D,. 	 (2.22) 

This is an invariant in the sense that if we decide to include an extra 
variable in {KO (and thus to the phase diagram), both D and D, increase 
by 1 so that C remains fixed. 

Regions of analyticity of fb[K] are called phases. Loci of codimension 
C = 1 (i.e. loci which separate phases), are called phase boundaries. 
Loci of codimension greater than one cannot possibly represent phase 
boundaries. To give a prosaic example, in order to partition a room into 
two, it is necessary to build a wall across it — a pole through the centre 
of the room will not suffice. 

2.3.1 Ambiguity in the Definition of Phase Boundary 

The definition of phase given above is ambiguous. There may exist a 
path along which fb[K] is analytic going from one side of a phase boundary 
to the other. Using our "room analogy", this is like having a wall which 
does not quite reach the ceiling. At floor level, the room is partitioned, 
but a flying insect may be able to pass from one side of the room to the 
other without encountering any impediment to its progress. 

An example is the liquid-gas-solid phase diagram, shown in figure 
(2.1). Although it is not possible to pass from fluid to solid without en-
countering a phase transition, it is possible to choose a path in p—T space 
which goes from liquid to gas without encountering any singular behaviour 
in thermodynamic quantities. We shall see later that this is a reflection of 
the fact that the liquid and gas states have the same degree of symmetry, 
whereas a fluid has a higher degree of symmetry than a solid (at least if 
the solid is crystalline, which is the usual case in equilibrium)? 

2  Even if the solid were in equilibrium and amorphous, it would still represent a 
state of broken translational invariance, whereas in a fluid, this symmetry is unbroken. 
See section 2.10. 
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Pi 

solid 
	liquid 

vow" mem 

CP / 
TP *-- gas 

Figure 2.1 Phase diagram of a typical substance: p is pressure, T is temperature. 

The point TP is a triple point (C = 2) and the point CP is a critical point (C = 2). The 
solid—liquid phase boundary extends to arbitrarily high pressure (in principle), whilst 
the gas—liquid phase boundary ends at CP. The dashed curve represents a trajectory 
in the phase diagram along which no phase transition is encountered, even though a 
change of phase has apparently taken place. 

2.3.2 Types of Phase Transition 

We shall show shortly that fb[K] is everywhere continuous: our demon-
stration will be specific to a particular model system, but the conclusion 
is true in general. This implies that where phase boundaries exist, they 
must come in two classes: 

(1) Ofb/OKi is discontinuous across a phase boundary. It can be ei-
ther one or more of the Ofb/OKi which is discontinuous. If this 
case occurs, then the transition is said to be a first-order phase 
transition. 

(2) The only other remaining possibility for non-analytic behaviour 
is that all OfbloKi are continuous across the phase boundary. If 
this occurs, the transition is said to be a continous phase tran-
sition. Sometimes, this is referred to as a second order transition 
too, but for reasons already explained, this terminology is not 
encouraged. 

2.3.3 Finite-Size Effects and the Correlation Length 

In practice, the thermodynamic limit is never attained: 1023  0 oo. 
Thus it is reasonable to ask whether or not the thermodynamic limit is 
physically relevant. If there were perfect instrumental resolution, a change 
in the physical properties in a finite system would not occur over an 
infinitesimal interval of the relevant coupling constant, but would occur 
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over some range. This phenomenon is an example of a finite size effect, 
and will be discussed in detail later. In practice, however, instrumental 
resolution is usually the limiting factor. 

We can give a simple criterion for when predictions using fb[K] are 
not reliable, by introducing the concept of the correlation length, usu-
ally denoted by e. Loosely speaking, the correlation length describes the 
spatial extent of fluctuations in a physical quantity about the average of 
that quantity. For example, in a gas, there will be density fluctuations 
in thermal equilibrium. In a particular region of the sample, the density 
may be higher than the average density. We can choose to think of such 
a region as a droplet of near-liquid density floating in the gas. In ther-
mal equilibrium, there is a distribution of droplet sizes, of course, but it 
turns out that there is a well-defined average size, at least away from the 
critical point itself. This characteristic size is, roughly speaking, what we 
mean by the term correlation length. We will see later how to give a more 
precise definition of this important quantity. It is not unreasonable that 
the droplet distribution should depend upon the position in the phase 
diagram: how close the system is to a phase boundary or critical point for 
example. Thus, we might expect that e depends upon the coupling con-
stants, in particular temperature. The correlation length depends strongly 
on temperature near a continuous phase transition, diverging to infinity 
at the transition itself. This is what gives rise to scaling behaviour, as we 
will see. 

Now we are ready to address the question of when the finite size of 
a real system is important. In a finite system, the correlation length is 
not able to diverge to infinity, since it cannot exceed L, the characteristic 
linear dimension of the system. Thus, for temperatures sufficiently close to 
TT  that the correlation length of an infinitely large system would exceed 
L, the behaviour of the finite system departs from the ideal behaviour 
described by fb. To make a rough estimate of when this occurs, let us 
assume that 

T— T  
eot-2/3 	where t =

T, 	
(2.23) 

with 6 'A 1 10A being the correlation length well away from the critical 
point. This form for e is not unrealistic for magnetic or fluid systems: the 
value for 6 is probably an overestimate in many cases, so our calculation 
will be quite conservative. For a system with L = 1 cm, we find that e = L 
when the reduced temperature t 10-11. In this situation, finite size 
effects would be hard to observe. 

On the other hand, in computational simulations of critical phenom-
ena, the system size L is usually only a modest multiple of 6, and finite 
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size effects must be taken into account carefully in order to obtain useful 
results. We will discuss this topic further once we have introduced the 
RG. 

2.4 THE ROLE OF MODELS 

The casual reader of any textbook or research paper on phase transi-
tions and statistical mechanics cannot help being struck by the frequency 
of the term "model: The phase transition literature is replete with models: 
the Ising model, the Heisenberg model, the Potts model, the Bax-
ter model, the F model, and even such unlikely sounding names as the 
non-linear sigma model! These "models" are often systems for which 
it is possible (perhaps only in some limit or special dimension) to compute 
the partition function exactly, or at least to reduce it to quadrature (i.e. 
one or a finite number of integrals, rather than an infinite number of inte-
grals). Beautiful mathematics has emerged from this enterprise, revealing 
intriguing connections with solitons, Ramanujan identities, string theory 
and topology 

We will not, for the most part, deal with these topics here. The tech-
niques are very specialized and only work in certain special cases. For 
example, although the Ising model in zero external field was solved in a 
tour de force by Lars Onsager in 1944, it still has not been solved in an 
external magnetic field. Much effort has been expended to solve it in 3 
dimensions in zero magnetic field, although a solution of the d = 2, H # 0 
case might be more significant. The techniques do not generalize well, and 
what we really require is an approach which will always work, albeit in 
some approximation. Nevertheless, the exactly solvable models have been 
of enormous importance in statistical mechanics, providing a benchmark 
on which to test approximation methods. 

Before we proceed to a discussion of the Ising model, it is appropriate 
to make a few remarks about the role of models in statistical physics. 
There are two diametrically opposing views about the way models are 
used. The "traditional" viewpoint has been to construct a faithful repre-
sentation of the physical system, including as many of the fine details as 
possible. In this methodology, when theory is unable to explain the re-
sults of an experiment, the response is to fine-tune the parameters of the 
model, or to add new parameters if necessary. An example of a branch of 

3  R. J. Baxter Exactly Solved Models in Statistical Mechanics (Academic, New York, 
1989); Knot Theory and Statistical Mechanics, V.F.R. Jones, Scientific American, Nov. 
1990, pp. 98-103 



2.5 	The Ising Model 	 33 

science where this is considered appropriate is quantum chemistry. On the 
other hand, such fine detail may actually not be needed to describe the 
particular phenomenon in which one is interested. Many of the parame-
ters may be irrelevant, and even more importantly, the directly measur-
able quantities may well form dimensionless numbers, or even universal 
functions, which to a good approximation do not depend on microscopic 
details. An example of a more "modern" viewpoint is the BCS theory of 
superconductivity, which predicts a variety of dimensionless ratios (i.e. 
the famous relation between the zero temperature gap and the transition 
temperature: 2A/kB71, N 3.5) and functional forms (i.e. specific heat as a 
function of temperature) for all weak-coupling superconductors. In such 
a case, it is only important to start with the correct minimal model, 
i.e. that model which most economically caricatures the essential physics. 
The BCS Hamiltonian is the simplest 4 fermion interaction with pairing 
between time-reversed states that one can write down. In this viewpoint, 
all of the microscopic physics is subsumed into as few parameters, or phe-
nomenological constants, as possible. As we shall see, the existence of 
such a viewpoint is a consequence of RG arguments. The RG also pro-
vides a calculational framework for explicitly identifying and calculating 
universal or model independent observable0 

2.5 THE ISING MODEL 

This is a model of a ferromagnet or antiferromagnet on a lattice. It was 
first studied in 1925 by Lenz and Ising, who showed that in dimension 
d = 1 the model does not have a phase transition for T > 0. They 
concluded (incorrectly) that the model does not exhibit a phase transition 
at a non-zero temperature for d > 1, and so could not describe real 
magnetic systems. 

We consider a lattice in d dimensions of sites {i} labelled 1 ... N(0), 
which we will take to be hypercubic, unless otherwise stated. The degrees 
of freedom are classical spin variables Si, residing on the vertices of the 
lattice, which take only two values: up or down, or more usefully, 

Si = ±1. 	 (2.24) 

The total number of states of the system is 2N(11). The spins interact 
with an external magnetic field (in principle varying from site-to-site) Hi 

4  A good discussion of this philosophy is to be found in the article by Y. Oono, Adv. 
Chem. Phys. 61, 301 (1985). 
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and with each other through exchange interactions Jii, Kijk, ... which 
couple two spins, three spins, ... 

A general form of the Hamiltonian is 

—Ho = E HiSi E JiiSiSi E Kiaksisisk + . 	(2.25) 
=Ea 	ij 	 ijk 

although in the following we will neglect three and higher spin interactions 
represented by Kijk and ... in eqn. (2.25). 

For this system, the operation Tr means 

E 	E • • • E 	E • 
	(2.26) 

S1=±1 S2=±1 SN(1)=±1 {Si=±1} 

The free energy is given by 

Fa(T , {Hi}, {JO ...) = —kBT log Tr e—'51In 	(2.27) 

and thermodynamic properties can be obtained by differentiation, as men-
tioned after eqn. (2.4). For example, the average value of the magnetisa-
tion at the site i is obtained by differentiating with respect to the external 
magnetic field Hi: 

OFfi =
Ri 
	13H, — kBT 	 

Tr e-
1 	,

filin 	kBT 	(2.28) 
= — 

Even if we are interested in the situation where there is no magnetic field, 
or one that is constant over lattice sites, it is still a useful trick to allow 
the term Ei  HiSi in H0 so that formal identities like eqn. (2.28) can be 
established. At the end of a given calculation, Hi can be set to any given 
desired value, including zero. We shall use this device, sometimes known 
as the method of sources, often in these notes. 

What about the thermodynamic limit for the Ising model? For the 
finite system, the free energy is an analytic function of each of its argu-
ments, at least in some strip including the real axis, because for each of 
the 2N(0) states of the system, the energy of the nth  state, En, is simply 
a linear combination of the coupling constants. Writing 

el(n) 
Zn = E exp (--pEnEKD 

n=1 

shows that Z0[K] is analytic. 

(2.29) 
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Phase transitions can only arise in the thermodynamic limit. It can 
be shown5  that for the thermodynamic limit to exist it is necessary that 
the two-spin interaction Jii satisfies 

E 	i< co. 	 (2.30) 

As before, in our discussion of the existence of the thermodynamic limit at 
T = 0, the range of the interaction k and the dimensionality determine 
whether or not this limit exists. For example, let us suppose that for two 
spins Si and Si at lattice sites with positions in space ri, 

Jii = A Iri - rir . 	 (2.31) 

Then, we require a > d for the limit to exist. In d = 3, this condition 
excludes magnetic dipole-dipole interactions, which fall off with distance 
r as r-3. However, as long as the dipoles are not aligned, it can be shown5  
that the thermodynamic limit does exist and is independent of the shape 
of SI. 

2.6 ANALYTIC PROPERTIES OF THE ISING MODEL 

Assuming the existence of the bulk free energy density fb[Kb let us ex-
amine its analytic properties. This is important to do, because we are 
interested in precisely when and how non-analytic behaviour can arise. 

Notation:- We shall sometimes use the abbreviation f for fb. The notation 
< ij > means "i and j are nearest neighbour sites". 

We consider the nearest neighbour Ising model Hamiltonian 

N(11) 

-Hn = H ESi+ J sis; 	 (2.32) 
i=1 	<ii> 

where we have assumed that the external magnetic field H is uniform 
in space, and that the only interaction between spins is that between 
neighbouring spins, and denoted by J. With a uniform external magnetic 
field, we can define the magnetisation or magnetic moment per site, M: 

N(0) 1
11) 

M 	
N( 

 E (Si). 	 (2.33) 
:=1 

5 A clear presentation is given by R. Griffiths in Phase Transitions and Critical 
Phenomena, vol. 1, C. Domb and M.S. Green (eds.) (Academic Press, New York, 1972). 
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This can be obtained by differentiating with respect to H: 

1 Orb 
M 	 (2.34) N(St) OH • 

The principle analytic properties of f are: 
(a) f < 0. 
(b) f (H, J, T, . . .) is continuous. 
(c) OflOT,Of101 1,— exist almost everywhere. Right and left deriva-

tives exist everywhere and are equal almost everywhere. 
(d) The entropy per site S = —0 f 10T > 0 almost everywhere. 
(e) °POT is monotonically non-increasing with T. Thus, 

02f < 0, 
OT2  

(2.35) 

OS 	82 1  

H
>0. CH E-_-- T OT  —I H = T—OT2  1 		(2.36) 

(f) Of1OH is monotonically non-increasing with H. Thus, 

021  H2 < 0
, 
 (2.37) 

which implies that the isothermal susceptibility XT > 0, where 

OM 	02 f  
XT— 

 "" OH IT — &W. 	
(2.38) 

These properties are postulates in thermodynamics, but can be proved in 
statistical mechanics. The strategy of the proofs is to start with a finite 
system Si, and then take the thermodynamic limit. We shall prove (a) and 
(d) by simple ad hoc methods, and show that the other properties follow 
from the important notion of convexity. 

Proof of (a): Zn is a sum of 2N(n)  positive terms for any finite T, since 
exp(—x) > 0 for any finite real x. The free energy density in the finite 
system is given by 

Fn 
fn 	N(St) 

= —kBT log Z. 	(2.39) 

If we can show that Zo > 1, then (a) will follow from eqn. (2.39). But this 
must be true, because there is at least one configuration of the spins, de-
noted by 1,511, for which Hi)  is negative and hence exp(---fiHn) is greater 

which implies that the specific heat at constant magnetic field 
CH  > 0: 
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than one. Since all terms in Zn are positive, the existence of this single 
configuration guarantees that Zn > 1 as desired. What is the configura-
tion {Si*}? For H < 0, J > 0, Si* = -1 for all sites i does the trick. A 
slicker way to see that there must be a configuration {Si*} is to note that 

Tr Hn[S] = 0. 	 (2.40) 

Since the terms in the trace are non-zero, there must be at least one 
configuration with Hfl negative in order that eqn. (2.40) can be satis-
fied. Finally, since Zr)  > 1, the desired result (a) follows after taking the 
thermodynamic limit. Furthermore, since the logarithm function only de-
velops singularities when its argument vanishes, we can conclude that Fn 
is analytic. 

Q.E.D. 

Proof of (d): Assume existence of derivative for the moment. We shall 
prove this below. Then 

8F0 

	

	 Tr  Hne-011a 
= kB  log Tr e-°11'n -FkBT 

OT 	 kBT2  Tr e-Plin 
Tr Min e-011 

= kB  [log Z f j 

= -kB Tr (pn log pa) 	 (2.41) 

where 

Pn = Tr e-OHn • 
But eqn. (2.41) is a sum of positive terms, since 0 < pn < 1 and thus 
log pn < 0. Dividing by N(S2) and taking the thermodynamic limit we 
obtain the desired result. 

Q.E.D. 

The other results listed are a direct consequence of the property of con-
vexity: Fn and f are convex functions of their arguments T, H and 
J. 

exp(—#11r2) 
(2.42) 
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f f  

chord 

	w— x 

(a) 	 (b) 

Figure 2.2 (a) A convex up function. (b) A convex down function. 

2.6.1 Convex Functions 

Definition: A function f(x) is said to be convex up (down) in x if 
and only if for all numbers al  and 02  such that for 0 < al, 02  < 1, 
al  + 02  = 1, we have 

f(aix + 020 alf(x) 021(y) 	(convex up) 	(2.43) 

Or 
f (aix 020 < al .f(x) 021(y) 	(convex down). 	(2.44) 

These definitions are best understood graphically, as shown in figure (2.2): 
Convex up means that the function f is always above any chord. Convex 
down means that the function f is always below any chord. 

From this definition it can be proved that if f(x) is bounded and 
convex up (down) then: 

(i) f(x) is continuous. 
(ii) f(x) is differentiable almost everywhere. 

(iii) df Ids is monotonically non-increasing (non-decreasing). 
These theorems are trivial graphically. For example, any discontinuity 
clearly violates convexity, as shown in figure (2.3a) 
Also, f(x) may have a point discontinuity in slope, as shown in figure 
(2.3b), and still remain convex. 

2.6.2 Convexity and the Free Energy Density 
Now we will show that the free energy density f (H, J, T) is convex up 

in H. The convexity in T and J is left as an exercise to the reader. The 
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discontinuity 

chord 
NNe( 

I 

cusp 

chord 

f f 

	•—x 
(a) 	(b) 

Figure 2.3 (a) f(x) lies both above and below chord. (b) Convex up function with 
slope discontinuity. 

proof of convexity relies on the Haider inequality:6  given two sequences 
Igk l and {hk } with gk  and hk  > 0 for all k, and two real non-negative 
numbers a and /3 such that a + = 1, then 

E(9k) a  (hk) P  < MAY (Ehk)P. 	(2.45) 

Now consider Z-(H). We have suppresed all arguments except H, the 
magnetic field. By definition, 

Zri(H) = Tr ePH Et s. exp{/3J E 5253  + ...}, 	(2.46) 
<ii> 

NIMMI.I.MOMMI.M.M.,..01M•111•1•0•10•NO=11,  

osi 

defining the variable gm. Thus 

Zo(aiHi a2H2) = Tr exp 	E S= + oct2H2 ESz G[S] 

= Tr (€ 13111 	sios))01 (e11-12 	g[s]) 02  
(2.47) 

where we have used al  a2 = 1 to write g [S] = g[S]a1osia2 . Now use 
the Holder inequality: 

Zn(aiiii  a2H2) < (Tr el611' E. c[5]) al  (Tr e01/2  Ei sic[s]) a2  
(Hi )al  (H2  )a2 	 (2.48) 

6  See, (e.g.), L.M. Graves, The Theory of Functions of Real Variables (McGraw-Hill, 
New York, 1946), p. 233. 
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Taking the logarithm, multiplying by —kBT, dividing by N(1), and taking 
the thermodynamic limit we find 

a2H2) al  f(Hi) a2f(H2), 	(2.49) 
showing that the free energy per unit volume is convex up. 

Q.E.D. 
A similar proof goes through for other coupling constants. 

2.7 SYMMETRY PROPERTIES OF THE ISING MODEL 

In this section we discuss some of the symmetries of the Ising model. We 
will use these symmetry properties to show that a phase transition is not 
possible in a finite system. We begin with a trivial lemma: 
Lemma: For any function .1) which depends on the spin configuration 
{Si}, 

E (l)({ 5= })= E 
fsi=±1) 	{s,=±1}  

Proof: By inspection. Just write out the terms. Every term occurs once 
in the summation on both sides of the equation. 

Q.E.D. 

2.7.1 Time-reversal Symmetry 
The first symmetry which we discuss is up-down symmetry, sometimes 

called time-reversal symmetry or Z2 symmetry. The definition of HO 
in eqn. (2.32) implies that 

Ho(H,J,{Si}) = 110(-11,J,{—Si}). 	(2.51) 
Thus 

Zo(—H,J,T)= > exp [—OHn(—H, J,{Si})] 
{si=±1} 

= 	E exP [ —OHn( — H,J,{ —si})] 
{ss=±1} 

= 	E exp [—f3lla(11,.1,{Si})] from eqn. (2.51) 
{s,=±1} 

= Z0(H,J,T). 	 (2.52) 

Thus the free energy density is even in H: 
f(H,J,T)= f (—H,J,T). 	(2.53) 

(2.50) 

from eqn. (2.50) 
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• A sites 

o B sites 

Figure 2.4 Cubic lattice divided into two interpenetrating sub-lattices A and B. 

2.7.2 Sub-lattice Symmetry 

There is a second symmetry which occurs when H = 0. This is called 
sub-lattice symmetry. We divide our hypercubic lattice up into two 
interpenetrating sub-lattices, which we shall call A and B, and label the 
spins on them accordingly, as shown in figure (2.4). In the Hamiltonian 

110(0,J,{Si})= —J E sis; 	(2.54)  
<ii> 

the spins on sub-lattice A only interact with spins on sub-lattice B and 
vice versa, so we can trivially re-write the Hamiltonian as 

I10(0,J,{Se},{e}) = —J E SASE. 	(2.55) 
<ii> 

The trace operation can be decomposed into two traces over each sub-
lattice: 

(2.56) 
{S,=±1} {siA=±1}{sp=±1} 

The Hamiltonian, written as in eqn. (2.55), exhibits the symmetry 

110(0,—J, {se}, {e})  = Hao,J, {-se }, {e})  
= 	(0, J, {se},{-43})  

Now let us examine the implications of this symmetry for the thermody-
namics. The partition function in zero field is 

(2.57) 
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(a) 

Figure 2.5 Minimum energy configuration of an anti-ferromagnet on (a) Bipartite 
lattice. (b) Non-bipartite lattice. 

Zn(0,—J,T)= Tr Calln(°'—'47)  

= E E e_oHno,_.msAl{s13), 

{sit}fsr, 
= E E e-OHn(0,J,{-SA}{SB)) from (2.57) 

{v}{sr} 
= E E  e—pHo(o,J,{SA}{SB}) from (2.50) 

{SA}{SB). 

= Zn (0, J,T). (2.58) 

Thus, we obtain the second symmetry property of the free energy density: 

f (0, J,T) = f(0,—J,T). 	 (2.59) 

In zero field, the ferromagnetic Ising model (J > 0) and the anti-ferro-
magnetic Ising model (J < 0) on a hypercubic lattice have the same 
thermodynamics. 

This conclusion relies on the fact that a hypercubic lattice is bipar-
tite: it can be subdivided into two equivalent sub-lattices. The theorem 
does not apply on a triangular lattice, which is not bipartite. 

You might also imagine (correctly) that it would be difficult to write 
down the zero temperature configuration of an Ising model in d = 2 on a 
triangular lattice with J < 0. As shown in figure (2.5), it is not possible 
to simultaneously minimise all the interactions on the triangular lattice, 
as it is possible to do on a square lattice. This phenomenon is an example 
of frustration. 



then 
min E > E min E),[5]. [s] 	[s] 

(2.61) 
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2.8 EXISTENCE OF PHASE TRANSITIONS 

How do we construct the phase diagram of a particular system? One 
of the most useful techniques, particularly for the purpose of doing rig-
orous mathematics is the so-called energy-entropy argument, which 
we shall give here. The basic idea is quite simple. At high temperature, 
the entropy S always dominates the free energy, and the free energy is 
minimised by maximising S. At low temperature, there is the possibility 
that the internal energy E dominates TS in the free energy, and the free 
energy may be minimised by minimising E. If the macroscopic states of 
the system obtained by these two procedures are different, then we con-
clude that at least one phase transition has occurred at some intermediate 
temperature. 

Consider the Ising model in d dimensions at T = 0. The free energy, 
then, is just equal to the internal energy, E, and the problem of find-
ing the free energy is reduced to that of finding the energy E. This is 
easy for the Ising model Hamiltonian eqn. (2.32), and for generalisations, 
such as those involving next nearest neighbour interactions, can be often 
simplified by using the following lemma: 

Lemma: If the energy E is the sum of a number of terms dependent upon 
the spin configuration [5]: 

E = E EA[s], 	(2.60) 
A 

Here "min E" means the minimum value of the function E, found by 
searching over all the configurations Pk In other words, if one can find a 
configuration which minimises each term in the Hamiltonian separately, 
then that configuration is a ground state (not necessarily unique). 

Proof: E. 	> minrsj EA[S] by definition. Summing over A and then 
taking the min yields the result. 

Q.E.D. 

The ground state is any state for which the equality is satisfied, again 
by definition. As the contributions EA to the energy depend upon the 
coupling constants, the minimising configuration may be anticipated to 
depend upon the values of the coupling constants. 



—J E S=S;  
<ii> 

is minimized by Si = Si, and that the term 

—HEST 
i 

is minimized by 
S.
'

= f +1 H > 0; 
l--1 H<0. 

(2.62) 

(2.63) 
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Figure 2.6 Zero temperature phase transition by level crossing. 

2.8.1 Zero Temperature Phase Diagram 

Let us suppose that, for a given set of values of the coupling constants 
[K], we have obtained the energy levels of the system: that is, we know 
the configuration that minimises the energy, the configuration that corre-
sponds to the first excited state of the system etc. Now we make a small 
change in the coupling constants. In general, all the energy levels change 
by a small amount. Thus, we can map out the energy levels as a function 
of [K], as sketched above. It may happen that as the coupling constants 
pass through the set of values denoted by [Ks] the first excited state and 
the ground state cross: the energy of the system is now minimised by a 
configuration that previously corresponded to an excited state of the sys-
tem. This will usually generate a first order transition, because there will 
be a discontinuity in 0E10Ki, as shown in figure (2.6). This mechanism 
for a zero temperature phase transition is known as level crossing. 
Note that it is not necessary to take the thermodynamic limit to achieve 
a zero temperature phase transition by this mechanism. The non-analytic 
behaviour is permitted to occur in this case, not because N -4 oo, but 
because /3 --+ oo. 

Now let us put this into practice for the Ising model with J > 0. We 
observe that the term 
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Thus the ground state configuration, for each spin Si, is: 

= +1 H > 0, J > 0 ; 
—1 H < 0, J > 0 . (2.64) 

Note the dependence on the coupling constant H (external field). For 
H > 0, the magnetisation 

E  = +1 
N(Si) ice  

(2.65) 

and for H < 0, Mc = —1. Thus the zero temperature phase diagram for 
J > 0 has a phase transition at H = 0. 

At zero external field H, the cases Si = +1 (spin up) and Si = —1 
(spin down) have the same energy. Which is observed in practice must 
therefore depend on the initial conditions in which a given system is 
prepared. We will say more about this important case below. 

2.8.2 Phase Diagram at Non-Zero Temperature: d = 1 

Phase transitions at T = 0 may or may not disappear for T > 0. In 
fact, what happens depends on the dimensionality of the system. We 
will now see, using heuristic arguments due to Landau and Peierls, that 
in d = 1 for T > 0 there is no long range order (i.e. no ferromagnetic 
state), whereas for d = 2, long range order can exist above T = 0, with a 
transition at Tc  > 0 to a paramagnetic (i.e. disordered) state. The dimen-
sion above which a given transition occurs for T > 0 is often referred to 
as the lower critical dimension. For now, the term "long range order" 
simply means a state in which the degrees of freedom (spins here) order 
over arbitrarily long distance, such as the ferromagnetic state. The para-
magnetic state does not have long range order: two spins widely separated 
will not, on the average, point in the same direction, whereas they will 
do so in the ferromagnetic state. We will define long range order precisely 
later on. The heuristic arguments given here form the basis of a rigorous 
proof of these results? 

In the preceding section, we found that at zero temperature, there are 
two possible phases at zero field: all spins up and all spins down. Consider 
the spin up phase 

11111•- TIM • 

7 A clear account may be found in IL Griffiths in Phase Transitions and Critical 
Phenomena, vol. 1, C. Domb and M.S. Green (eds.) (Academic Press, New York, 1972). 
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N(f2) — n 

	

lim 	 — 1. 	 (2.66) 
N(n)--*co N(ft) 

The only fluctuations which can potentially destroy long range order 
are those involving a thermodynamically large number of spins. In other 
words, a non-zero fraction of spins, f, must be reversed on average: 

N(ft) — fN(S1)  
lim 	 < 1. 	 (2.67) 

	

N(11)--+oo 	N(fl) 

What effect does this have on the thermodynamics? We have already 
considered the energy of the system; when spins are flipped, there are 
many ways that this can occur for a given value of the overall magneti-
sation. Thus, we need to compute the entropy corresponding to a state 
with given magnetisation. In the ordered state the entropy is zero if all 
the spins are aligned, so the free energy is just 

FN = —NJ, 	(2.68) 

where we write, for ease of notation, N E- N (SI). Now consider the state 
with 2 domains 

TM • • • I il •• • 1111 

The interface i between the domains has cost energy. In fact, 

EN = —NJ + 2J = —(N — 1)J + J. 	(2.69) 

What is the entropy SN? The interface between the two domains can be at 
any of N sites (assuming periodic boundary conditions, for convenience). 
Then 

SN = kB log N. 	(2.70) 

Hence, the free energy difference between the state with an interface and 
the state with all spins up is 

nrundary) — Ire phase) E OF = 2.1 — kBTlogN 	(2.71) 

For any T > 0, OF --+ —co as N co. The system can lower the free 
energy by creating a domain wall for any temperature T > 0. In fact, 
the free energy can be lowered still further by splitting each domain in 

As the temperature is raised above zero, each spin executes a sort of 
Brownian motion by virtue of being in thermal equilibrium. Does this 
spin flipping destroy the long range order? In the thermodynamic limit, 
the uncorrelated flipping of a finite number of spins, n, cannot destroy 
long range order: 
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H 
M= 	 0 	M=+I 

Figure 2.7 Zero temperature phase diagram for the ferromagnetic Ising model in 
d =1. 

two. We may continue this argument until there are simply no domains 
remaining at all. 

Thus, the long range order state is unstable towards thermal fluctu-
ations for T > 0: the magnetisation in zero external field for T > 0 is 
strictly zero, whereas for T = 0 the magnetisation is either +1 or —1. A 
corollary of our result that thermal fluctuations destroy long range order 
in this case is that there is no phase transition for T > 0, because there 
are no longer two phases at H = 0. 

The argument given above assumed that the interaction between the 
spins was short-ranged: this meant that the energy difference between the 
spin up system and the two domain system was independent of N. In fact 
it can be shown that if the interaction Jii between spins at ri and ri 
varies as 

Iri — 
	 (2.72) 

then long range order may persist for 0 < T < 71, as long ass 1 < a < 2. 
For a < 1, the thermodynamic limit does not exist. For a > 2, the interac-
tion qualifies as being short-ranged, and the argument for the destruction 
of long range order for T > 0 applies. 

2.8.3 Phase Diagram at Non-Zero Temperature: d = 2 

As above, we consider a domain of flipped spins, in a background 
of spins with long range order, but now the domain is two-dimensional. 
Suppose the border between the flipped spins and the up spins contains n 
bonds. Then the energy difference between the state with a domain and 
one with complete long range order is DEN 2Jn. What is the entropy? 
We can estimate it as follows. Choose a point on the boundary. How 
many ways are there for the boundary to go from the starting point? If 
the co-ordination number of the lattice is z, then an upper bound on the 

8 For references and the solution of the difficult case a = 2 see J. Frohlich and T. 
Spencer, Commun. Math. Phys. 84, 87 (1982). 

thl  — 
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number of configurations of the boundary or domain wall is zn. The precise 
number is less than this, because the boundary of just a single domain 
cannot intersect itself, by definition (otherwise there are two domains!); 
as a crude first guess, we could argue that at each step, the domain wall 
can only go in z — 1 directions, because we should disallow the step that 
would re-trace the previous one. This still allows the boundary to intersect 
itself, so our estimate of the entropy will be an overestimate. Then, as in 
d = 1, we can compute the entropy difference due to the presence of the 
domain: AS N  kBnlog(z — 1). Thus, the change in free energy due to a 
domain whose boundary contains n bonds is 

AFn  = [2J — (log(z — 1))kBT]n. 	 (2.73) 

Using the same argument as in the one-dimensional case, we are only 
interested in domains which contain a thermodynamically large number 
of spins (i.e. a non-zero fraction of the total number of spins). Thus, in 
the thermodynamic limit, n —> oo. The behaviour of AFn  in this limit 
depends upon the temperature. If 

2J  
T > Tc = 

	

	 (2.74) 
kB log(z — 1) 

then OF ---> —oo as n oo and the system is unstable.  towards the for-
mation of domains? Accordingly we anticipate a disordered, paramagnetic 
phase with M = 0. For 0 < T < Tc, however, AF is minimized by n 0, 
and the state with long range order is stable. Thus, for 0 < T < T,, the 
system exhibits a net magnetisation M, which can be either positive or 
negative, in the absence of an applied field. This magnetisation is often 
referred to as spontaneous magnetisation. In conclusion, long range 
order may exist at sufficiently low but non-zero temperature in the two 
dimensional Ising model. A corollary of this result is that the zero field 
two dimensional Ising model exhibits a phase transition at a tempera-
ture Tc  > 0. Note that the transition temperature, as estimated in eqn. 
(2.74), depends on the coordination number z, and therefore on the type 
of lattice. The transition temperature is not a universal quantity. 

Our results imply that the lower critical dimension is d = 1. For d > 1, 
long range order is possible for T > 0. In fact, although we have assumed 

ex
W
for
be
9  For a square lattice, with z = 4, the estimate yields Tc  1.82JAB, whereas the 
act result is kBTC  = 24(sinh-1(1)) 2.27J, and was obtained by Kramers and 
annier, Phys. Rev. 60, 252 (1941); ibid 60, 263 (1941). They obtained the expression 
 Te without solving the model! The transition temperature in eqn. (2.74) is too small, 
cause we have overestimated the entropy. 
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Figure 2.8 Phase diagram of the ferromagnetic Ising model in d = 2. 

d is an integer in writing these results, the conclusion can also be shown 
to be correct if non-integral values of d are allowed. That is, if we write 
d = 1+ c, then the critical temperature I', is 0(e). Finally, in deriving 
these results, we worked with the Ising model, but our analysis really 
only used the fact that domain walls exist. Thus our conclusions apply in 
general for a Hamiltonian with a discrete symmetry. 

2.8.4 Impossibility of Phase Transitions 

We can easily see that the existence of a phase transition is impossible! 
From time-reversal symmetry, as expressed by eqn. (2.53), we know that 

Fil(H , J,T) = Fn(—H, J,T). 	 (2.75) 

The magnetisation M(H) satisfies 
, 	0111(H)  

N(n)mr2(H) - 	OH 
8111(-11)  

OH (2.76) 
OFQ(—H) 

0(—H) 

Thus 

At H = 0 we must have 

= —N(S1)M0(—H). 

ltIn(H)= 

WO) = —Mn(0) = 0. 

(2.77) 

(2.78) 

This "impossibility theorem" shows that the magnetisation in zero exter-
nal field must be zero! What has gone wrong? 
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H 

Figure 2.9 The free energy density as a function of magnetic field H for finite and 
infinite systems, for T < Te.  

2.9 SPONTANEOUS SYMMETRY BREAKING 

The argument above that WO) = 0 is indeed correct for a finite 
system. It fails in the thermodynamic limit, however, because f(H) can 
develop a discontinuity in its first derivative 0f I OH . We know that f (H) 
is a convex up function. The condition f(H) = f(—H) does not imply 
M(0) = 0 unless we make the additional assumption that f(H) is smooth 
at H = 0 and the left and right derivatives are equal. Smoothness follows 
if 

1(H) = 1(0) + 0(H") 
	a >1 	(2.79) 

and 

lim 
f(-1-c) — f(0)  = lim f(—c) — f(0)  0. 	(2.80) 

c-44) 	E 	6—+0 

However, none of the properties of f(H) guarantee that smoothness oc-
curs. We can evade the consequences of the "impossibility theorem" and 
still satisfy the analytical properties of the free energy density if the be-
haviour near H = 0 is as sketched in figure (2.9): 

f(H) = 1(0) — M,IH1+0(.11'), 	a > 1. 	(2.81) 

This is not differentiable at H = 0, but is convex. Eqn. (2.81) implies that 

Of 	{—M,+O(H'1), H > 0 
aH 	+M8 +O(H°-1), H < 0 . 

As 'HI -4 0 

M = — = Of 1M H>0 (2. 83) OH 	H < 0 . 

(2.82) 
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Figure 2.10 Magnetisation M plotted against external field H. 

The graph of magnetisation M versus external field H is sketched in figure 
(2.10). We see that M,, the spontaneous magnetisation is given by 

M5 = lim 
Of(H)  

(2.84) 
H—.0+ OH 

and 
. 	Of(H) -M, = lim - 

H—•O— CH 
(2.85) 

Notice that the limits 
(a) N(S)) co 
(b) H--+ 0 

do not commute: 
1 Ofb(H)  

lim 	lim 	 - 0 
N(()-.00H-+0 N(0) OH 

whereas 

(2.86) 

1 OFa(H)  
lim 	lim 	 0 0. 	 (2.87) 
H—.0N(0)--.co N(11) OH 

Notice also that the value of the spontaneous magnetisation M, is a func-
tion of temperature: at zero temperature, we already argued that M, 
should be unity, because the spins will be either all up or all down. As 
the temperature rises towards Tc, the value of the spontaneous magneti-
sation is reduced, as an increasingly greater fraction of spins are flipped 
by thermal fluctuations. At Tc, the spontaneous magnetisation has fallen 
to zero, as depicted in figure (2.11). 

This set of phenomena is referred to as spontaneous symmetry 
breaking. When H = 0, 

	

R 	= //n[{-S;}]. 	 (2.88) 
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Figure 2.11 Spontaneous magnetisation as a function of temperature. 

	

Even though the Hamiltonian is invariant under {Si} 	{—Si}, the statis- 
tical expectation values are not invariant under time-reversal symmetry: 
(Si) 0 0 and 

M = Ern 	(Si) 0 0. 	 (2.89) 
N--+oo N(

1 
 S1) AT 
7 

" 

The use of the word "spontaneous" in the above definition is to distinguish 
this phenomenon from the appearance of magnetisation in the presence 
of an external field H # 0. This rather mundane symmetry breaking is 
not really symmetry breaking at all: the symmetry in the Hamiltonian is 
not there to begin with for H 0. 

2.9.1 Probability Distribution 

Spontaneous symmetry breaking should appear to you paradoxical for 
another reason. If the probability of finding the system in a state {Si} is 
given by the Boltzmann distribution 

exp (--filift
1

({Si}))  
lrb({Si}) = 	 (2.90) 

Z1-  

then the fact that lin is time-reversal invariant implies that Po is also 
time-reversal invariant. Thus 

(Si) = Tr Pc2({Si})Si = 0, 	 (2.91) 

since Pn({Sil) is even and Si is odd in the variable Si. This is, of course, 
nothing more than a restatement of the "impossibility theorem!' This 
version of the theorem fails; in an infinite system Z —+ oo and we have 
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to be more careful about the probability distribution: in the thermody-
namic limit, the probability distribution is not necessarily given by the 
Boltzmann distribution. 

Let us explore the consequences of this remark, and obtain an un-
derstanding of spontaneous symmetry breaking from the point of view 
of the probability distribution. Suppose that we consider the Ising model 
with H = 0. Let two configurations of the system labelled by A and B be 
related by time-reversal symmetry - the spins in the state A are related 
to those in state B by a simple flip of all the spins. Both states A and 
B are equally likely, and the magnetisation in state A, M, is minus the 
magnetisation in state B. 

Now apply an external field H. What is the probability of the system 
being in state A, PA, as opposed to the probability of being in state B, 
PB? Due to the coupling term -H Ei  St  in the Ising model Hamiltonian 
eqn. (2.32), it follows that 

PA  e-N-HN(12)M) 	 e2pHN(S1)M 	(2.92) PB e—p(HN(0)M) 

Taking the thermodynamic limit N(n) oo, for H > 0, gives 

PB 0 	 (2.93) 
PA 

and thus the system must be in state A with magnetisation +M. This 
is true regardless of the magnitude of H, and in particular applies as 
H 	0+. On the other hand, if H < 0, taking the thermodynamic limit 
gives 

PA
PB  oo 	 (2.94) 

and the system must be in state B with magnetisation -M. This is also 
the case as H 0-. 

Thus the presence of an infinitesimal field H 	0+ or 0-  together 
with the thermodynamic limit provides a macroscopic weighting of the 
state with magnetisation +M over the state with magnetisation -M (or 
vice versa). How can we explain spontaneous magnetisation in the ther-
modynamic limit, in zero field, from the probabilistic picture? 

The use of the limit H 0+ and the thermodynamic limit is equiva-
lent to setting H = 0 but using a restricted ensemble in which microstates 
contributing to -M, are not included. Thus, the probability distribution 
for a system after the thermodynamic limit has been taken is identically 
zero for all states whose magnetisation is negative. There is another prob-
ability distribution that must be defined, corresponding to the simultane-
ous use of the H 0-  limit and the thermodynamic limit: it gives zero 
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weight to states whose magnetisation is positiveP In each case, for the 
states with non-zero weight, the weight is given by the Boltzmann distri-
bution after care has been taken to include the mathematical delicacies 
of the meaning of probability in an infinite systemll 

2.9.2 Continuous Symmetry 
The result that long range order is possible in the Ising model only 

for d > 1 relies on the fact that the symmetry group of Ho is Z2, i.e. 
Ha[{Sil] = 110 R —Si}}. The fact that the Ising model has a discrete 
symmetry means that the width of the domain walls must be finite. We 
can see that easily, because a domain wall separates I from j., and since 
those are the only possible states of the spins, the domain wall thickness 
is one lattice unit. 

However, things change if the spins Si obey a continuous symmetry 
rather than a discrete symmetry. One way for this to occur is if the Si 
are vectors, allowed to point in all directions (47r steradians) rather than 
just up or down. This occurs in the Heisenberg ferromagnet with 
HamiltonianHeisenberg model 

I/4Si)] = — EJi7 Si • Si  - E Hi • Si. 	(2.95) 
<ii> 

In general, this is a more realistic model of a ferromagnet than the Ising 
model, since there is no preferred direction for the spins to point in. In 
a real crystal, spin-orbit coupling is present in addition to the exchange 
interaction already considered. The spins will then couple to the elec-
tronic charge density, which reflects the presence and symmetry of the 
underlying crystal lattice. In the cases where this is significant, the ro-
tational symmetry of Ho is broken, and there is a tendency for spins 
to align along crystallographically preferred directions. In extreme cases, 
this can be sufficiently strong that a better model Hamiltonian is not the 
Heisenberg Hamiltonian but the Ising Hamiltonian. 

The Heisenberg model has a continuous symmetry. Suppose that 

Si = (Sf , Sy, Si) 	(2.96) 

10 A quantum version of the argument given here may be found in D. Forster, Hy-
drodynamic Fluctuations, Broken Symmetry and Correlation Functions (Benjamin, 
Reading, 1975), Section 7.2. 
11  A complete discussion of the rigorous mathematics is given in J. Glimm and A. 

Jaffe, Quantum Physics: A Functional Integral Point of View (Springer-Verlag, New 
York, 1981), especially Chapters 5 and 16. 
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and R(9) is a rotation matrix which rotates a vector in (x, y, z) space by 
an angle 0 about direction y, for example. 

Then the energy of eqn. (2.95) is invariant under the simultaneous 
rotation of all the spins by an arbitrary angle 0; 

HaRR(0)Si}] = Ht-IRSin 	 (2.97) 

Of course, in general, we do not have to single out the y-axis. R can be 
an arbitrary rotation about an arbitrary direction. Thus, the Heisenberg 
model is rotationally invariant, and this symmetry is sometimes called 
0(3) (in three dimensional space). It is very important that you realize 
that the rotations are of the spins, keeping the lattice fixed in space. The 
rotation operator R(0) acts on the degrees of freedom, not the spatial 
co-ordinate system. 

The continuous rotational symmetry is spontaneously broken in the 
state of long range order. It is "easier" for thermal fluctuations to destroy 
long range order when there is a continuous symmetry as opposed to 
a discrete symmetry, because "there are more directions to point in (in 
spin spacer This should be intuitively clear, and will made precise in 
chapter 11. To compensate for the increased entropy due to the larger 
dimensionality of the order parameter, an increased energy is required if 
there is to be long range order in the Heisenberg model at T > 0. This 
can be achieved by increasing the dimensionality of the lattice: spins have 
more neighbours with which to interact. A detailed analysis12  shows that 
to have long range order, we need d > 2. These results are a consequence 
of the fact that with a continuous symmetry, the width of a domain wall 
is the size of the system. 

2.10 ERGODICITY BREAKING 

Statistical mechanics is intended to represent the actual dynamical 
behaviour of a system in equilibrium. What are the consequences of spon-
taneous symmetry breaking for the dynamics? To answer this, let us recall 
how the actual dynamics of a system enters the statistical mechanics. 

Usually, statistical mechanics is justified by identifying time averages 
with ensemble averages. To be more precise, for any observable A{rat}, 
where rii(t) are the dynamical degrees of freedom as a function of time 
t, (position and momentum for a fluid, for example), the time average is 

12  The Mermin-Wagner theorem, due to N.D. Mermin and H. Wagner, Phys. 
Rev. Lett. 17, 1133 (1966). 
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(A) E. pil°  71  jot  l 	Afiji(e)}dti  

and in statistical mechanics it is hypothesised that 

(A) = 1drli Fern  ({ } )A } , 

where Pern{74} is the equilibrium probability distribution of the vari-
ables NI. These variables constitute phase space for the system in 
question: for a single particle in a three dimensional box, phase space is 
six-dimensional, the variables being position and momentum. 

The basic assumption of statistical mechanics is that these two aver-
ages give the same result. This hypothesis is the ergodic hypothesis: as 
t --0 oo, NM) comes arbitrarily close to every possible configuration of 
the {ni} allowed by energy conservationP 

When H = 0 and T < Tc, regions of configuration (or phase) space 
with Mn = +M and Mn = M are sampled equally. An observer of 
the system would notice that at first the system had net (e.g.) positive 
magnetisation. After a while a large cluster of down spins might form 
and then grow, eventually causing the system to have a net negative 
magnetisation. The rate R at which such a cluster might form is expected 
to be of the Arrhenius form 

R a e-16AF  , 	 (2.100) 

where AF is the free energy of the critical cluster: clusters larger than 
this critical cluster will grow. Since AF is proportional to the surface area 
of the critical cluster, we expect that OF cc 01-1)/d. Hence, the lifetime 
of a state with a given magnetisation, r, is roughly 1/R, i.e. 

r e•-• exp[N(4-1)/1. 	 (2.101) 

In the thermodynamic limit, the lifetime will rapidly grow very large, so 
that the initial condition determines whether or not the magnetisation 
is positive or negative. Thus, in the thermodynamic limit, the system is 

13  For the Ising model, the Hamiltonian does not generate an equation of motion. 
The latter must be provided separately, and we shall assume that this has been done 
in the following. 

56 

given by 

(2.98) 

(2.99) 
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effectively trapped in one or the other region of configuration or phase 
space. This is known as ergodicity breaking14  

An important feature of this form of ergodicity breaking is that the 
configuration space has been fragmented into two regions corresponding 
to positive or negative magnetisation. Thus, for every state of the system 
in one of the regions, there is a corresponding time-reversed state in the 
other region, i.e. there is a one-to-one mapping between states of the 
system in the two disjoint regions of configuration space. The two regions 
are said to be related by symmetry, the symmetry in question being the 
same symmetry that has been spontaneously broken. 

We will explore these ideas further below. Note that in discussing 
ergodicity breaking, we had to invoke the thermodynamic limit. Thus, 
when we discuss phase space below, we will always assume that the ther-
modynamic limit has already been taken. The presentation will be partly 
verbal, although some references to the rigorous mathematics will be pro-
vided for the interested reader. 

2.10.1 Illustrative Example 
Consider a system with degrees of freedom {ci} (i = 1, , N) and 

a Hamiltonian HA{ci}. The degrees of freedom ci may be thought of as 
the position of particle i in a many-body system. Let us suppose that the 
system is translationally invariant. This means that configurations, which 
are identical apart from a translation by an arbitrary vector a, have the 
same energy: 

.11A{ci} = HA{ci + a}. 	 (2.102) 

The parameter A is supposed to represent all the parameters or coupling 
constants in the Hamiltonian; by varying A, we intend to make the system 
undergo a phase transition with spontaneous symmetry breaking. 

Now suppose that we are interested in computing the expectation 
value of the function fi(k), k 0, which we shall take to be 

fi(k) = exp (ik • ci) . 	 (2.103) 

The function fi(k) serves as our order parameter in this example. It has 
a simple interpretation: when summed over i, it is the Fourier transform 

14  A detailed discussion of this topic may be found in the introduction by A.S. Wight-
man to R.B. Israel, Convexity and the Theory of. Lattice Gases (Princeton Univer-
sity Press, Princeton, 1978). Less formal accounts are given by R.G. Palmer, Adv. 

Phys. 31, 669 (1982) and by A.C.D. van Enter and J.L. van Hemmen, Phys. Rev. 

A 29, 355 (1984). 
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of the density 
p(r) a E 	— ci). 	 (2.104) 

Thus, we expect that for A > Ac, (fi(k)) = 0, whilst for A < Ac, (fi(k)) 
0. To be more precise, 

(fi(k)) = Tr, exp(—SHA{ci}) 

Tr, fi(k) exp( —011), {ci} ) 	
(2.105) 

where the subscript a denotes the microstates (i.e. the values of the vec-
tors ci) included in the trace operation. 

What is the physical interpretation of the phase transition that occurs 
at A = Ac? The fact that (fi(k)),,. becomes non-zero means that the 
density of the system is not simply a constant in space, as it is for A > 
A,. Thus the transition is associated with some ordering of the particles 
in space — in other words, solidification. We will now show that in 
statistical mechanical language, this is just the spontaneous breaking of 
the symmetries associated with translational (and rotational) invariance. 

To proceed, we must first specify which microstates should be in-
cluded in o. If all possible microstates are included, then because of the 
translational invariance expressed in eqn. (2.102), 

(fi(k))a = ea" (fi(k))c, 
	 (2.106) 

and hence (fi(k))„, = 0 regardless of the value of A. The only way in which 
(fi(k))e, can be non-zero (as it should be for A < AO is if a does not include 
all the allowed microstates. However, this statement is not precise enough: 
if some microstates are omitted from a, but all the residual microstates 
remain in a under the action of the translation operation, then (fi(k)), 
will still vanish. Therefore, it is only if the residual set a is not invariant 
under the symmetry group of HA{ci} that (fi(k)),, can acquire a non-zero 
value. The residual set of microstates represents the system subject to the 
constraint that the centre of mass is at a certain position in.space; we will 
see in the following section that there are infinitely many other residual 
sets at  in phase space, each corresponding to a different centre of mass 
position. 

The requirement that the set of microstates included in the trace 
be restricted for A < A, is, once again, ergodicity breaking. In this 
example, it is associated with spontaneous symmetry breaking, although 
this need not be the case: on the coexistence line of the liquid — gas 
transition, for example, phase space is fragmented into two distinct sets, 
which are not distinct in terms of their symmetry properties. 
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In summary, there are two complementary ways of looking at sponta-
neous symmetry breaking: 

(i) Method of small fields: H --> 0+ etc. 
(ii) Ergodicity breaking and the restricted ensemble. 

For simple problems like ferromagnetism, (i) is almost always more con-
venient. However, for some problems, such as superfluidity, the analogue 
of the magnetisation is a thermally averaged quantum mechanical oper-
ator, for which there is no physical counterpart to the external field H. 
In this case, it is often convenient to formally invent such a quantity so 
that one can differentiate the free energy with respect to it (i.e. form the 
analogue of —ORM = M). For some complex problems, especially those 
in which disorder plays a crucial role, (ii) has proven to be a more useful 
formalism. 

In the following sections, we will explore in more detail the conse-
quences of spontaneous symmetry breaking and ergodicity breaking. Our 
goal will be to obtain a qualitative understanding of the structure of phase 
space. When reading these sections, bear in mind the very important point 
that the structure of phase space depends upon the values of the parame-
ters .\ in the Hamiltonian and on O. Thus, the structure of phase space is 
a reflection of the state of the system, in other words, where the system 
is in its phase diagram. 

2.10.2 Symmetry and its Implications for Ergodicity Breaking 
In the preceding section, we showed by example that ergodicity break-

ing necessarily accompanies spontaneous symmetry breaking, although 
the converse is not true. In what manner is phase space broken? To an-
swer this, consider the simple example given in the preceding section, for 
A < Ac. We saw there that if the set a of microstates is the entire phase 
space, then (fi(k))o  = 0, and furthermore, that this quantity could only 
be non-zero if a was a subset of the entire phase space which did not trans- 
form into itself under the symmetry of the Hamiltonian To  : 	ci + a, 
where a is arbitrary. 

Let us now consider the set al  of microstates in phase space, defined 
to be the "largest" set for which (fi(k))„,, 0 0. Is this set unique? We will 
now show that there are a non-denumerably infinite number of such sets, 
each generated from al  by the symmetry operations To. 

Let (72  be a set of microstates generated from the set Cl by some 
member T of the transformations To: 02  = T(ai). By definition, az 0 Cl, 
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and H(Tci) = //(ci). The partition function, taken over the set a2  is 

Z2 = E e—f3HA{ci} 

ciETfri) 
= E  e  HA{Tei} (making a change of dummy variable) 

cietri 
_  

ciEer, 
=Z1. 

Thus, 

(fi(k))„, =_1 	E  eik•ci e—PHA{ei} 
Z2 

ci ET(cri ) 

1 (2.108) eilOci+a)e—N-1{ci-Fa} • 

Z1 c; Eoi 
(fi(k))ai  

In the region of phase space (i.e. the set of microstates) 02, the order 
parameter fi(k) is non-zero. The set 02  was obtained from al  by a simple 
translation by a i.e., by the translational symmetry which was sponta-
neously broken for A < A. Hence, we conclude that if ergodicity is broken 
so that a certain order parameter is non-zero in some set a of microstates 
in phase space, then the order parameter will attain a (possibly different) 
non-zero value in all other sets of microstates related to a by applying the 
symmetry of the Hamiltonian that has been spontaneously broken. In the 
example here, these other sets of microstates correspond to the system 
being translated in space from the position it occupies in the microstates 
in a. Hence we have justified the statement made in the preceding section 
that phase space is broken into ergodic regions, each describing the solid 
with a different centre of mass position. 

Although we have shown that spontaneous symmetry breaking gen-
erates disjoint ergodic regions in phase space, related by the symmetry 
that has been broken, our argument does not imply that these are the 
only sets of microstates in phase space. That is, we must logically allow, 
in principle, for the possibility that the symmetry-related ergodic regions 
in phase space do not exhaust phase space. To explain the interpretation 
of this statement, let us again use our simple example. If an ergodic re-
gion a and its symmetry-related counterparts do exhaust phase space, 
then apart from simple translations (and rotations), there is only one 
way for the solid state to exist, corresponding to the microstates con-
tained within a. Hence, if there are, for example, two sets al and 02, each 

(2.107) 
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Figure 2.12 Ergodicity breaking accompanying spontaneous symmetry breaking. (a) 
Symmetry-related ergodic regions exhaust phase space. (b) Symmetry-related regions 
do NOT exhaust phase space. This situation is thought to occur in some disordered 
systems, where it is known as "replica symmetry breaking". 

with their symmetry-related counterparts, which are required to exhaust 
phase space, then we conclude that there are two ways for the solid state 
to exist, one corresponding to the microstates in 01, the other to the 
microstates in o2. 

This situation is illustrated schematically in figure (2.12). This latter 
possibility does in fact occur in some systems, most notably in some 
disordered systems, such as spin glasses15  and rubber
referred to, for historical reasons, as replica symmetry b

15  See the review by K. Binder and A.P. Young, Rev. Mod. Phys. 58
16  See P. Goldbart and N. Goldenfeld, Phys. Rev. Lett. 58, 267

Rev. 39, 1402 (1989); ibid. 39, 1412 (1989), where a detailed discu
the replica method and the statistical mechanics of cross-linked polym
17  This seems to have been proposed first in the context of spin

Blandin, J. Phys. (Paris) CoRoq. C6-39, 1499 (1978). The key develop
by G. Parisi, Phys. Rev. Lett. 43, 1754 (1979); J. Phys. A 13, L155 (198
(1980); ibid. 13, 1887 (1980); Phys. Rev. Lett. 50, 1946 (1983). 
r where it is 
reakine 

, 801 (1986). 
6 (1987); Phys. 
ssion is given of 
eric materials. 
 glasses by A. 

ments are given 
0); ibid. 13, 1101 



62 	 2 Phase Transitions: Principles 

Lrofefil  
WI10 

(a) (b) 

Figure 2.13 Formation of rubber by vulcanisation. (a) A melt of polymer molecules. 
(b) A cross-linked melt of polymer molecules. 

2.10.3 Example of Replica Symmetry Breaking: Rubber 

In this section, we will describe a physical example of replica sym-
metry breaking — the vulcanisation of rubber to form an equilibrium 
amorphous solid. The use of the term "equilibrium" is significant here: 
common glass is an amorphous solid too, but is almost certainly not 
in equilibrium. We will postpone a discussion on the origin of the term 
"replica symmetry breaking" until section 2.10.5. 

Consider the situation shown schematically in figure (2.13a), where 
a melt of polymer molecules is confined within a box. This corresponds 
to how rubber starts out in life — as liquid latex. Rubber is formed by 
adding sulphur to the system, and baking; as depicted in figure (2.13b), 
this causes strong chemical bonds to be formed between the sulphur atoms 
and two different repeat units (monomers), which may be on the same 
polymer or on different polymers. When a certain fraction of monomers 
have been cross-linked, the system is found to become a solid. 

Here, we will not present the detailed theory of this phase transition, 
but in the spirit of this chapter, show how, in principle, it may be described 
using the concept of ergodicity breaking. To do this, we will adopt a 
simple minimal model of a polymer, a model that captures the essential 
features and incorporates the remaining details into phenomenological 
parameters. For polymers, such a model has the following characteristics: 

(1) A polymer is a featureless line object. Details of the chemical struc-
ture, side-group and back-bone composition are ignored. This is some-
times referred to as a long wavelength description: when viewed with poor 
resolution, this description of a polymer would seem to be accurate. 

(2) The lines representing the polymers interact with a potential 
U. This models the complex forces between the actual chemical units 
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making up the chain. The details of the potential are of course deter-
' mined by the factors omitted under (1). These find their expression in 
the precise form of the potential. The interactions are of two sorts: in-
teractions between monomers on the same polymer and interactions be-
tween monomers on different polymers. In both cases, the interaction 
must have a hard core, representing the fact that atoms cannot occupy 
the same point in space, and a tail representing the actual forces between 
monomers. If the polymers are immersed in a solvent, then interactions 
with the solvent molecules also must be taken into account. 

(3) The interactions U in (2) seem formidable. Yet certain observables, 
such as the spatial extent of a given polymer, turn out to be independent 
of the finer details of the interactions, for long chains, and crude mod-
elling of the interactions is sufficient. This is reminiscent of the notion of 
universality, and indeed, RG methods have played an essential role in 
studying the statistical physics of polymers18  

(4) Dynamics: polymer molecules may not pass through each other. 
(5) Cross-links simply staple together two polymer strands, at some 

given point along their arclengths. Note that a cross-link does not occupy a 
fixed position in space, although its position is fixed along the arclength of 
each of the participating polymer molecules. The cross-links are supposed 
to have formed at random along the arclength of the chains during the 
vulcanisation process. 

With these ingredients, let us now consider the phase space of a cross-
linked polymer system. Let I' denote the phase space of the system of 
cross-linked polymers, but with the dynamics modified so that the poly-
mers may pass through one another. This phase space is the starting 
point for the detailed theory of the statistical mechanics of cross-linked 
systems. This is shown schematically in figure (2.14a). Now imagine that 
at time t = 0, the physical dynamics is restored: polymers may not pass 
through one another (figure (2.14b)). In the absence of cross-links, the 
system would still be ergodic within the whole of T. However, the combi-
nation of the cross-links and the physical dynamics (4) means that there 
will be configurations of the chains which are topologically inequivalent. 
A simple example is given in figure (2.14c): with the modified dynamics 
(when t < 0) the two configurations may evolve into one another, whereas 
with the physical dynamics (when t > 0) it is impossible to go from one 
configuration to the other. This observation implies that if the system is 
at point A in r at t = 0, then for t > 0, only those configurations topolog-
ically equivalent to that of A may be sampled. Thus we conclude that I' is 

18  A review of some aspects of polymer science, from the renormalisation group point 
of view, is given by Y. Oono, Adv. Chem. Phys. 61, 301 (1985). 
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Figure 2.14 Phase space r of a system of cross-linked polymers. (a) Polymers allowed 
to pass through one another. (b) Polymers not allowed to pass through one another after 
time t = 0. If the representative point of the system was at A at time t = 0, then the 
system is later trapped within the shaded ergodic region. (c) Two configurations which 
are unable to evolve into one another under the physical dynamics. (d) If the system has 
become a solid, then translational invariance is spontaneously broken. Ergodic regions 
labelled by a and a' are not related by translational symmetry, whereas o is related to 
a by translational symmetry. 

broken up into disjoint ergodic regions, which bear no particular relation 
to one another. They simply reflect the fact that, with a given disposition 
of cross-links along the arclength of the polymers in the network, there 
are many possible topologies of the network. 

So far, we have not mentioned spontaneous symmetry breaking. Let us 
now suppose that beyond a particular number of cross-links, the system 
becomes a solid. From the considerations outlined in the preceding sec-
tions, we know that solidification will entail a breaking of phase space into 
disjoint ergodic regions, related by translational symmetry. This presum-
ably occurs within each of the ergodic regions created by the topological 
constraint. Thus the original phase space r now contains two categories of 
ergodic region: those related by translational symmetry (a and is' in figure 
(2.14d)), and those which are not related by translational symmetry (a 
and cr' in figure (2.14d)). Thus, the simplest possibility for the structure 
of phase space in this example is that r is fragmented into ergodic re-
gions corresponding to the topological constraint, which are themselves 



2.10 Ergodicity Breaking 	 65 

further fragmented into translational symmetry-related ergodic regions 
only. A more complicated scenario is also possible, namely one in which 
each ergodic region corresponding to the topological constraint is not filled 
completely by one ergodic region and its symmetry-related counterparts; 
this would imply that with a specified set of cross-links there is more 
than one way for the system to solidify. Questions of this sort can only be 
addressed by detailed calculation. Both scenarios, nevertheless, are good 
examples of replica symmetry breaking. 

2.10.4 Order Parameters and Overlaps in a Classical Spin Glass 

The notion of order parameter was useful when we were discussing 
spontaneous symmetry breaking of the simplest kind, where there is only 
one way for the system to order. In this section, we will extend the notion 
of order parameter to situations where there is replica symmetry breaking, 
i.e. where there is more than one way for the system to order. 

There are two principal complications that arise when replica sym-
metry breaking occurs. First, it is usually very hard to specify any given 
ergodic region cr; this, in turn, makes it impossible to perform the com-
putation of statistical expectation values in this ergodic region. Secondly, 
each family of non-symmetry-related ergodic regions may yield a different 
value for the expectation value of a given quantity, since they correspond 
to different physical orderings of the system. 

To obviate these difficulties, it has been found useful to employ the 
concept of the overlap. The basic idea is to form a comparison between 
the microstates in one ergodic region and those in another. The idea is 
easy to grasp from the simple example of a three dimensional Ising spin 
glass, which we shall describe here in a qualitative way only. 

An Ising spin glass is nothing more than an Ising model, with the 
exchange constant J being a random variable, distributed with some vari-
ance about a mean value? This can arise in certain magnetic alloys, where 
the magnetic moments are randomly distributed in the material. In such 
a system, it is not surprising that the ground state (at zero temperature) 
is not simply all spins up or down; instead the configuration which min-
imises the energy will be some sequence of up and down spins, dictated by 
the actual spatial variation of J in the particular sample being studied. 
Thus, the time average magnetic moment mi at site i is not necessarily 
the same as that at another site j, but at zero temperature, it is certainly 
non-zero. 

19  J is random in space, but is constant in time. The spatial variation of J reflects 
the random positions of the magnetic moments and varies from sample to sample. 
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Now consider the system at temperature slightly above zero. The flip-
ping of each spin does not destroy the low temperature phase, although 
the average value of the local moment is reduced from the zero tempera-
ture value: 0 < mi(T) < mi(0), as in a ferromagnet. On the other hand, at 
very high temperature, where entropic considerations outweigh energet-
ics, the system is a paramagnet, and mi(T) = 0. In the low temperature 
phase, known as the spin glass phase, the net magnetisation (Ei  mi) of 
the system is zero if J is distributed symmetrically above and below zero. 
Consequently, the net magnetisation cannot distinguish a low tempera-
ture ordered state of the spins from the high temperature paramagnetic 
phase, and so it is not a good order parameter here. 

One way to circumvent this problem is to use the overlap, constructed 
as follows. Suppose that the phase space of the system is, at some value of 
the temperature, external fields and other coupling constants, broken into 
ergodic regions labelled by a, a', etc. Then let the overlap q"' between 
ergodic regions a and a' be defined by 

where 

q
„„
""

, 
N(n) 

ihn
-- co N

1 	E InTmr (2.109) 

(2.110) 7n7 = Z—Tr,Sie-fiHn 

( n) i=i 

, 
is the average moment at site i when the system is in ergodic region o. 

The overlap has several desirable features. It is zero in the paramag-
netic phase, but may be non-zero for appropriate choices of o and a' in the 
spin glass phase. In particular, q" 0 0. If ergodic region of is the same as 
ergodic region al, but all the spins are flipped (i.e. o f  and of are related 
by time-reversal symmetry), then qual = q"1, showing that the overlap 
does not favour any particular ergodic region over its symmetry-related 
counterparts. 

If there is only one ergodic region (plus its time-reversal symmetry-
related counterpart), then q"' has only one possible value. On the other 
hand, if there is replica symmetry breaking, then qut'' can take on a range 
of values, depending upon which ergodic regions are being compared. 
Thus, q°°', if it could be calculated for all pairs of ergodic regions, could 
act not only as an order parameter, but could also indicate whether or 
not replica symmetry breaking occurs. 

Unfortunately, q°"' cannot be calculated directly, in general. Instead, 
we consider the probability distribution for q"': 

P(q) = E tei  (q - q701) 	(2.111) 
clef 
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Figure 2.15 Possible forms for [P]. (a) No order (e.g. paramagnetic phase). (b) 
Ordering has occured, but there is only one way for the system to order (e.g. ferro-
magnetic phase). (c) Multiple ways for the system to order: replica symmetry breaking 
(e.g. putative spin glass phase). 

where w° is the normalised Boltzmann weight for the ergodic region a: 

w = 
_ 	

(2.112) 
, 

, 	

• 

The Boltzmann weights are included in the definition to ensure that P 
is normalised. The probability distribution, as defined here, varies from 
sample to sample as the actual values of J vary from sample to sample. So 
in practice, it is the probability distribution, averaged over the probability 
distribution for J, that is important and potentially calculable: this we 
denote by [P]. One important virtue of [P] is the fact that, by definition, it 
is obtained by summing over all of phase space! This makes approximate 
calculations of this quantity feasible. 

From the considerations in the preceding paragraph, we expect that 
[Mhos three generic forms, as illustrated in figure (2.15). In the absence of 
ordering, it is a delta function at the origin, because m7 = 0. This would 
occur in the paramagnetic phase. In the presence of ordering, where there 
is only one way for the system to order (not counting symmetry-related 
counterparts), as in the ferromagnetic phase, [11 = o(q — q), where 4 0 0 
is the unique value of the overlap. Finally, if there are many ways in which 
ordering can occur (i.e. replica symmetry breaking), as is thought to be 
the case in the spin glass phase then [P(q)] is some non-zero function of 
q which is not a delta function at one value of q. At the time of writ-
ing, the nature of the low temperature phase of experimentally realisable 
spin glasses is a matter of debate. Certain model calculations20, computer 

20 A. Georges, M. Mezard and J.S. Yedidia, Phys. Rev. Lett. 64, 2937 (1990). 
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calculations on finite systems21  and experiments on small samples 22  indi-
cate that replica symmetry breaking may occur, in contradiction to other 
theoretical argumentsP 

In summary, calculation of [P(q)] as the coupling constants in a given 
problem are varied, offers a way to calculate the phase diagram of a com-
plex system — one in which the elementary concept of order parameter 
is not sufficient to characterise all the phases that may be presena4  

2.10.5 Replica Formalism for Constrained Systems 

Up to this point, we have used the term "replica symmetry breaking" 
as a code-word for a particular way in which ergodicity may be broken. 
The reader undoubtedly is puzzled about both the origin of this term 
and how to implement the notions of ergodicity that we have described 
heuristically. In this section, we indicate the answer to these questions, at 
least in principle. 

We begin by considering a system with quenched disorder. By this, 
we mean one whose Hamiltonian can be written in the form H ({Si}; X), 
where {Si} is the set of degrees of freedom (for convenience associated 
here with lattice sites i = 1... N(S2)) and X denotes some parameter 
or set of parameters in the Hamiltonian which is distributed at random 
according to its probability distribution P. In the example of the Ising 
spin glass discussed earlier, 

H = - E Jijsis; 	 (2.113)  

with X representing the random variables Jij, and the probability of J2j 
taking on the value J being given by some probability distribution P(J) 
such as 

P(J) 	1e-(J-40)212(6J)2. 	(2.114) 
Var(SJ)2  

In the infinite-range Ising spin glass or as it is sometimes called, the 
Sherrington-Kirkpatrick model, the sum over i and j in eqn. (2.113) is 

21 J. R ger,  e 	R. Bhatt and A.P. Young, Phys. Rev. Lett. 64, 1859 (1990). 

D
B

f

22  N.E. Israeloff, G.B. Alers and M.B. Weissman, Phys. Rev. 44, 12613 (1991). 
23  W. McMillan, J. Phys. C 17, 3179 (1984); A. Bray and M. Moore, in Glassy 
ynamics and Optimization, edited by J. van Hemmen and I. Morgenstern (Springer, 
erlin, 1986); D. Fisher and D. Huse, Phys. Rev. Lett. 56, 1601 (1986). 

24  An explicit example where replica symmetry breaking occurs in a system without 
rustration is given by S.A. Janowsky, Phys. Lett. A 125, 305 (1987). 
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not restricted to nearest neighbours; since a given spin may then interact 
with any other spin, no matter how far away in real space, this model 
Hamiltonian is sometimes considered to represent the physical system in 
an infinite dimensional space. Alternatively, each spin may be regarded 
as reacting to the average or mean field of all the other spins in the 
system; hence, the statement that mean field theory is exact for an 
infinite-range model. Most of the analytic work on spin glasses, with which 
the replica theory was developed, was for the infinite-range model. The 
variables X are referred to as quenched, because they are considered not to 
be able to equilibrate with the remainder of the system, as represented by 
{Si}. For example, they might represent the magnetic moments of random 
impurity atoms in a solid. If the impurity atoms are able to diffuse around 
in the solid, and thus relax their distribution into an equilibrium state, 
they would be referred to as annealed disorder. On the other hand, 
quenched impurities are supposed to be bound to particular lattice sites 
on the timescale of a given experiment, and so cannot equilibrate. 

The profound difference is clearly seen in the thermodynamics. For a 
system with annealed disorder, the free energy Fad satisfies 

exp (-43F,d)= Tr fsbx exp [-OH({Si}; X)] 	(2.115) 

whereas for a system with quenched disorder, the free energy Fqd  satisfies 

exp (-f3Fqd(X))= Tr{s}  exp [-OH({Si}; X)]. 	(2.116) 

In the expression for Fad , the trace includes X, whereas in that for Fqd, 
the resultant free energy depends on X. In an experimental situation 
that is well-described by Fqd , how do we calculate statistical mechanical 
observables? Usually it is assumed that the experimental sample is suffi-
ciently large that it may be considered to be composed of a large number 
of sub-systems, each of which is itself macroscopic and may be considered 
to be a realisation of the system with a particular choice for the quenched 
variables X. Thus a measurement of any observable in such a system cor-
responds to an average over all the sub-systems, i.e. an average over the 
ensemble of all realisations of X. Systems for which this assumption is 
valid are said to be self-averaging. 

Thermodynamic quantities may be calculated from the free energy. 
From the above argument, the experimentally observed free energy Fe  is 
given by 

Fe  =[Ffid(X)]-:2 
J 

P(X)Fqd(X) dX 	
(2.117) 

= — kBT J P(X) log Z(X) dX. 
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The logarithm in this equation creates a technical problem, which may 
be circumvented using the identity 

log Z = lim 
Zn — 1 

n—q) n 
Thus we must now calculate 

(2.118) 

H({Sa),X)] 	(2.119) 
= {Trsi . . . Trsn 	ELi 

= Trsi Trsn {e—° ELI Has°}1 

This may be interpreted as the statistical mechanical trace of a system 
composed of n replicas of the original system (each with the same real-
isation of the quenched disorder) with nN(12) degrees of freedom {51}, 
{Sh, 	, {Sn. Here we label spin i in replica a by S". The effective 
Hamiltonian H„ of the replica system is given by 

e — 13H„({Sa}) = (e—p ELI  H({Sa},X)1 	(2.120) 

which does not depend upon X because of the disorder average that has 
already been performed. The Hamiltonian for the n replicas of the sys-
tem is symmetric under interchange or permutation of the replicas, but 
is not expressible as the sum of n Hamiltonians, one for each replica: the 
disorder average has coupled the replicas! This new statistical mechanical 
problem has the unusual feature that n is to be taken as tending towards 
zero. As long as n is an integer, the permutation symmetry of the Hamil- 
tonian Hn  is manifest. However, in the limit n 	0, this symmetry can 
be spontaneously broken! 

To appreciate this fact and its significance, we need to make contact 
between replica theory and ergodicity breaking. The central result of the 
detailed replica theory25  is that the disorder average of the overlap prob-
ability distribution [P(q)] can be calculated approximately using replicas. 
In the case of the infinite-range spin glass, the result is 

[P(q)] = Urn 	E ( q — qc1 , 	(2.121) 
n(n 1 — 1 ) ao  

25  See the articles by Parisi op. cit; see also those by Goldbart and Goldenfeld op. 
cit. 

n 

[zn] = [ 11 za 
ot=1 
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where 
qa/3  = (57 511) . 	 (2.122) 

n 
 

The expectation value in eqn. (2.122) is taken with respect to Hn. Since 
/In  is symmetric under permutation of the replicas (in accord with the 
rather artificial nature of their introduction into the problem) it might 
be thought that q°0  must be independent of which replicas a and /3 are 
chosen, i.e. that q'  is equal to some number 4, dependent upon the 
temperature, external field, mean and standard deviation of the exchange 
constant, etc. However, it turns out that this is not correct: below the zero 
field spin glass transition temperature, qo is not independent of a and /3 
— replica permutation symmetry is spontaneously broken! The question 
of how to give meaning to an order parameter which is an x n matrix, 
in the limit that n 	0, is a delicate one, and beyond the scope of these 
notes; the interested reader is invited to consult the seminal papers by 
Parisi, to which we have already referred. 

The implication of the replica symmetry breaking may be seen by 
referring to eqn. (2.121) and the discussion in section 2.10.4. If qa# = 4, 
then [P(0]= 45(q— q). This corresponds to simple spontaneous symmetry 
breaking, with ordering at a single value corresponding to 4. When replica 
symmetry is broken, however, then [P(q)] is not a single delta function 
at a unique value of q. This means that the ergodicity has been broken, 
with more than one family of ergodic regions not related by symmetry. 

We have now come full circle in our description of how ergodicity 
can be broken at a phase transition. The replica method may seem to 
be nothing more than a convenient trick to perform a disorder average. 
However, the interpretation of replica symmetry breaking in terms of er-
godicity breaking indicates that it actually represents a complex encoding 
of phase space. The replica method has been of great value not only in 
studies of disordered systems, but in neural network models, graph the-
ory and optiraisation?6  There can be little doubt that this strange and 
fascinating technique will become better understood and further used in 
the future. 

2.11 FLUIDS 

In this section, we will review the statistical mechanical formalism for 
fluids, and demonstrate a connection between the description of magnets 
and the description of fluids. 

26  For a survey, see M. Mezard, G. Parisi and M.A. Virasoro, Spin Glass Theory and 
Beyond (World Scientific, Singapore, 1987). 
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We consider a continuum fluid, which may be classical or quantum, in 
a system 12. The system may have hard walls (i.e. be in a box), specified 
by the potential Lri(r). Suppose there are N particles, labelled by i = 
1,2,...N. 

The kinematics is specified by the co-prdinates ri and momenta pi, 
and the Hamiltonian is 

HSI = E — + Ul(rid — E U2(ri, ri) — E U3(ri, ri, rk) + • • • 
•

N 	[ pi2  

	

2ra 	2! 
1 	, 

	

2=1 	 3! 4.4k 
(2.123) 

br , U2,  U3, . . . are the one-body, two-body, three-body potentials etc. In 
general, the potentials will be translationally invariant, and depend only 
on differences between the co-ordinates of the particles. The potential 
IA represents an external field acting on each particle, such as gravity; 
usually, we will set it equal to zero. 

Normally, we work in the grand canonical ensemble, with the grand 
partition function 

="a = Tr r2e-P(Iin"'ilv) 	(2.124) 
where p is the chemical potential, 

TT 11 -  E — 
00 1 	N  (dd pi)(ddri)  

(2.125) 
N=0 1VI  i=1 	

(h)df 

in classical statistical mechanics and h is Planck's constant, included to 
provide continuity with the formulae from quantum statistical mechan-
ics. Dimensional analysis requires the presence of a constant with the 
dimensions of action, so it is conventional to choose it to be h. 

It is conventional to separate out the contributions from kinetic en-
ergy and potential energy as follows. We substitute eqn. (2.123) into 
eqn. (2.124), and re-order the integrals to give 

N 	po  d 

CI 

	

= = 	Ill j 7-td-e 
r 	d pi _024/2m  f H  ddri  e _0(u  

N=0 i=1 °° 	i=1 
(2.126) 

where U{ri} represents the potential terms in Hi). Now 

°° ddp _ftp2 /2m 	1 
00 hd e 	- ALT •••  

where the thermal wavelength is defined to be 

AT = h 
NAIWRGT 

(2.127) 

(2.128) 
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Then eqn. (2.126) becomes 

‘22• 1 ( e" \ N 

:=41  = La N! Ad ) '4 
n 

N  N=0 	T 

where the configurational sum is 

(2.129) 

N 

ilddrie-oulri) 
i.i. 

(2.130) 

The variable efio is sometimes referred to as the fugacity. 
The grand free energy is given by 

Ft-1(T, i i, Ili, U2, . . .) = —1: ET logE 0. 	(2.131) 

Sometimes, the grand free energy is referred to as the grand potential, 
and is denoted by the symbol O. F0  is not singular, despite the infinite 
sum in eqn. (2.129). The reason is that, in practice, the potentials U2, 
U3... have a hard-core, and so there is a maximum number of particles 
Ncp  that may be packed into the finite volume V(ft): 

N < Ng, 	(2.132) 

and the E('N°=0  does in fact have a finite upper limit. Then, the proofs 
for analyticity and the existence of the thermodynamic limit go through 
pretty much as in the magnetic case, with similar qualifications (range of 
potential, shape of region St). The grand free energy density is given by 

Fn 
fb(T,p, Ui, U2, ...) = 

v(0). lim V(St)' 	
(2.133) 

00  

with differential 
dfb(T, it) = —adT — pdµ 	(2.134) 

where a is the entropy per unit volume and the number density is 

P  = 
ii. 

111 	
(N)0 

v(i)--,co V(S./)•  

The grand free energy density is minus the pressure p, a result that follows 
from thermodynamicsr 

27  See, for example, L.D. Landau and E.M. Lifshitz Statistical Physics Part 1 (Third 
edition) (Pergamon, New York, 1980) §24. 

(2.135) 
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As in the magnetic case, a variety of analytic properties may be 
proven, many of which derive from the convexity of fb: 

(a) p(T, 	0. 
(b) p(T, it) is continuous. 
(c) opleT, Op10µ exist almost everywhere. 
(d) Oplep = p > O. 
(e) OplOT = a > 0 (True in quantum statistical mechanics only, but 

false for classical systems). 
(f) Op/OT is monotonic non-decreasing, which implies that the heat 

capacity CC  > 0. 
(g) Op/8µ is monotonic non-decreasing, which implies that the iso-

thermal compressibility KT is non-negative. 

2.12 LATTICE GASES 

One of the reasons for the importance of the Ising model is that a 
variety of other statistical mechanical systems can be simulated by it. 
This is the topic of equivalence between models, or more precisely ex-
act equivalence or mapping. Now we discuss a simple model for the 
statistical mechanics of a fluid — the lattice gas, due to Lee and Yang. 
The basic idea is to relate the local density of particles in a fluid to the 
local up-spin density of a magnet: We will demonstrate the equivalence 
in two steps, and in so doing, we will, incidentally, expose the advantage 
of the grand canonical ensemble over the canonical ensemble. 

As a preliminary step, recall that the potential terms in the Hamilto-
nian (2.123) may be re-written in terms of the microscopic density of the 
fluid 

	

p(r) a Eo(r — ri). 	 (2.136) 
:=1 

This expression is the microscopic density, because 

	

p(r)d3r = N(V) 	(2.137) 

where N(V) is the number of particles in the arbitrary volume V. Then, 
using the property of the delta function that 

J f(x)5(x — a)dx = f(a), 	(2.138) 

we write 

E Ui(ri) = E jc, Ui(r)O(r — ri)ddr = LddrUi(r)p(r) (2.139) 
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d 

E U2(ri — rj) = E U2(ri — r')45(i — ri)dde 
i#.1 1.1  

=Ej j U2 (r — r')45(r — ri)b(r1  — ri)ddr dde 

= 
J 	

U2(r — r')p(r)p(r') ddr ddr' 	(2.140) 

These expressions are not directly useful as they stand, because the 
degrees of freedom in the grand canonical trace operation are the co-
ordinates, not the microscopic density. We will shortly see how we can 
effectively make a change of variables to the density co-ordinates; but 
first, we need to discuss how to represent a fluid system by a spin system. 

2.12.1 Lattice Gas Thermodynamics from the Ising Model 
Consider a d-dimensional lattice, with co-ordination number z. Each 

site can be occupied by a single molecule or not at all. The occupation 
number of the ith  site, ni, takes the values 0 and 1 only. The total number 
of particles in the system is 

N(11) 
N = E ni. 

i=1 
(2.141) 

The occupation number ni is rather like the microscopic density p(r) in 
the continuum fluid. Thus we might guess a suitable Hamiltonian for the 
lattice gas of the form 

Mfl) 	 No) 
1 

= E Ui(Oni+ — L U2(iMnini 0(ninink), 
i=1 	2 i,j=1 

so that, in the grand canonical ensemble, 

Rs2 — = 	— µ)ni 	E u2(imnin, + 

(2.142) 

(2.143) 

The factor of 1/2 in the above equations avoids double counting the con-
tribution to the energy from the interaction between two particles. The 
Hamiltonian (2.142) only represents the potential energy of the gas; but 

f2 
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this does not matter, since as we have seen, the kinetic energy only con-
tributes to the fugacity. In the following, we will actually model the con-
figurational sum Q N, rather than the full partition function. 

To make contact with the Ising model, define 

1 ni 
= 2 

-(1 + Si), 	Si = ±1 (2.144) 

(2.145) 

(2.146) 

Substitution into eqn. (2.143) gives 

(i) - µ)2(1-r  Si) = E(Ui (i) - 	Ecui(i) 	(2.147) 

and 

. 	1 

	

E U2(i,3)nini =•i- • 	u2(imo. + six' + Si) 
ij 	 ii 

	

1 1 	 1 
= 	• 	U2(i, 	• 74 EU2(i, i)Si • 2 

	

2 4 Lz-ii 	
ii 

	

- • 	U2(i,j)SiSi 2 4 ij 

(2.148) 

If the forces between fluid particles are short-ranged and the density is 
sufficiently low, then we can ignore three and higher body potentials, and 
model the two-body potential by 

f U2  i and j nearest neighbors; 
u2(il - 0 otherwise. 

Then the right hand side of eqn. (2.148) becomes 

4
1 	1 + 2 , 1 
-U2 • N (n)Z • -2 	• r 2 • Z • E +42  • E (2.150) 

<ii> 

Setting Ui = 0, we find that 

HQ - AN = Eo - SiHi - J > sis, 	(2.151) 
i 	<ii> 

ni = 0 <=t. = -1 

ni = 1 4=>. = +1. 

(2.149) 



2.12 Lattice Gases 	 77 

with 
1 E0  = -- 
2NO-Oft U2N(0)z/8 	(2.152) 

	

1 	1 -H = 2 
	4

-U2z 	(2.153) 

-J U2 = 	(2.154) 
4 

Thus 
:lattice gas =Tr e"-°(lin-µN)  

=.( ri  
i=1 ni=0,1 

N(Q) 

=e-f3E° Zhing(H , J,  N (11)) 
This is our desired result — the thermodynamic properties of the lattice 
gas may be obtained from the thermodynamics of the Ising model. The 
reader is invited to investigate this in a subsequent example, which shows 
that the ideal gas law and corrections to it, the equation of state etc. may 
all be derived from the lattice gas model. 

2.12.2 Derivation of Lattice Gas Model from the Configurational Sum 
In the previous section, we showed that the lattice gas model is related 

to a spin system. In this section, we derive the lattice gas model directly 
from the configurational sum for a fluid. These two results together serve 
to illustrate an equivalence between fluid and magnetic systems. 

We approximate QN by dividing space Si up into cells of linear di-
mension a, such that probability of finding more than one molecule per 
cell is negligible: i.e. a < hard core radius. Then, the measure in QN may 
be replaced heuristically by 

	

N 	 N(11) 

	

H ddri adN(a)  E 	(2.156)  

	

i=1 	 a=1 

where a labels the cells and 

	

1 < a < N(S1) Err. adVW) 
 . 	 (2.157) 

Note the distinction between N, the number of particles, and N(St), the 
number of cells. Next, we replace the interaction Ufril between the par-
ticles by the interaction energy between occupied cells: 

U2(ri, rj) = U2(a, /3) if ri E cell a and ri E cell P. 	(2.158) 

—f3(Hr2 — AN) 
	

(2.155) 
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As before, we will assume that the forces are short-ranged, and that 
U2(a, /3) = 0 unless cells a and /3 are neighbours, in which case U2 has a 
constant value independent of a and Q. Then 

I. I fril U{na } = E U2(a13)%np 
a 

=U2 E nan,+... 
<0> 

Note that na  depends upon all the particle co-ordinates: na  = na{ri}, 
and that 

Ena  = N = ddrES(r — ri). 	(2.160) 

For each configuration specified by {na}, there correspond N! configura-
tions specified by {ri}, because we can freely interchange the particles. 
Thus 

Q 	pN  = AT! adN 	- 	(2.161) 

and 
co 	 N  

Eo = E eP -,- 
N=0 	

, ti.  ( a  ) d ] 

AT 	
E,3 ie_(.7{..} 	(2.162) 

{n a} 

where E' signifies a sum over the occupation numbers subject to the 
constraint that the total number of particles is fixed: 

	

Ena =N. 	(2.163) 
a 

This constraint makes calculation of the configurational sum very difficult, 
but the grand partition function is relatively simple, as we now explain. 

Consider the constrained sum below, where f is some functional: 

00 

E 	f((na}) = E f(na)-F E f(na) 	E f(na) 
N =0 {no} 	{na} 	{no} 	 {na} 

••••••ftvommemons, 	•••••••••••,„,,sol 	 ...•1111111......1=•••••11e.  

na-0 	a..=1 	na=a) 

= E f(na) 
{n.} 

(2.164) 

unrestricted 

(2.159) 
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In the final line, all 2Nn possible states of the variables {n,} are included 
in the sum, and not just those that satisfy the constraint (2.163). This is 
the advantage of the grand canonical ensemble. Thus 

E exP -# 	-  log(a/AT)] E no, + u2 E nano 	, 
{n.} 	a 	 <a/3> 

(2.165) 
and so we see that 

7730 = Tr e-P(1-In-AN) 
—lattice gas 	 (2.166) 

where 

	

it a //lattice gas = //physical + dkBT log(a I AT). 	(2.167) 

Thus, we have shown, albeit heuristically, that the grand partition func-
tion of the lattice gas follows from that of the continuum fluid. 

2.13 EQUIVALENCE IN STATISTICAL MECHANICS 

The preceding analysis has illustrated an equivalence between two 
physical systems. This term is used in two different ways in statistical 
mechanics, so it is appropriate to mention these usages here. 

(A) Exact equivalence. This refers to an exact mapping of one model 
into another, meaning that there is an exact relation between the 
partition functions of the two models. An example is the Ising 
model 4--4 lattice gas equivalence. 

(B) Approximate equivalence. This refers to models whose partition 
functions are not equal or related by an exact mapping, but which, 
nevertheless, behave identically near a critical point. Such models 
are said to be in the same universality class. An example, which 
we shall meet later, is the approximate equivalence between the 
long wavelength effective Hamiltonian used in the Landau theory 
of phase transitions and the Ising model. In the former, the free 
energy density of the system is, crudely speaking, expanded as a 
power series in the magnetisation M, to order M4, whereas the 
free energy density of the Ising model, when written in these terms, 
actually involves the quantity log cosh M. 

The phase diagram, thermodynamics, correlation functions etc. of a sys-
tem depend on 

(a) Specific values of coupling constants K. 
(b) Symmetry of model: discrete, continuous, actual symmetry group. 
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(c) Type of lattice (if present). 
(d) Dimensionality d. 
(e) Everything else you can think of! 

whereas the critical behaviour turns out only to depend on 
(a) Symmetry of order parameter. 
(b) Dimensionality. 
(c) Nature of critical point. 

and not on specific values of coupling constants, lattice type, or the pre-
cise form of the model Ha.miltonian?8  Clearly, we expect models related by 
exact equivalence relations to have identical critical behaviour. We would 
not expect a priori that systems, which are not related by exact equiva-
lence, would have the same critical behaviour. Nevertheless, experiment 
and theory both provide many examples where this does in fact occur! 
This is the phenomenon of universality. 

2.14 MISCELLANEOUS REMARKS 

2.14.1 History of the Thermodynamic Limit 

The importance of the thermodynamic limit was first realized by 
Hendrik KramersP He came to the realization that the limiting process 

Z can give distinct functions, not necessarily joined an-
alytically. As late as 1937, most physicists were unaware of this work, and 
even Sommerfeld believed that the partition function described only one 
phase (and could not describe liquid-gas coexistence, for example)! At 
a congress in Amsterdam to commemorate the birth of Van der Waals, 
there was confusion as to whether the partition function could give a 
sharp phase transition. Kramers, as chairman, put the issue to a vote, 
but the outcome was "inconclusive"! 

In 1941, Kramers and Wannier used the transfer matrix method to 
find the critical temperature of the d = 2 Ising model, assuming the 
existence of a single transition in the thermodynamic limit. Later, in 1944, 

28  A notable exception to the above statement is the Eight-vertex model, where 
one of the critical exponents does depend continuously on the coupling constants. See 
R.J. Baxter Exactly Solved Models in Statistical Mechanics (Academic, New York, 
1989). This behaviour is well-understood within the framework of renormalisation group 
theory, and only occurs for certain models with marginal operators. 
28  H. Kramers, Commun. Kamerlingh Onnes Lab. 22, Suppl. 83, 1 (1936)). An inter-

esting account of the history of the thermodynamic limit and Kramers' contributions 
to statistical mechanics may be found in the article by M. Dresden, Physics Today, 

Sept. 1988, pp. 26-33. 
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Lars Onsager solved the d = 2 Ising model exactly in one of the greatest 
tour de forces of mathematical physics?°  This demonstrated beyond any 
doubt: 

(1) The relevance of the thermodynamic limit; 
(2) That critical behaviour can disagree with mean field theory and 

critical exponents need not be those of the Weiss ferromagnet or 
the Van der Wails gas (see later). 

2.14.2 Do Quantum Effects Matter? 

The properties of matter, particularly condensed matter (meaning sys-
tems with strong interactions between the constituent parts), are usually 
attributed to quantum mechanics. Whilst this assertion is indisputable in 
a literal sense, it is by no means obvious that all the gross or qualitative 
characteristics of condensed matter are determined principally by quan-
tum mechanical considerations. For example, in section 1.2.4, we men-
tioned the self-avoiding walk model of a polymer in solution: although 
quantum mechanics certainly accounts for the existence of the polymer, 
and the details of the bond energies which result in the flexibility of the 
chain, the average end-to-end distance and certain other statistical prop-
erties on long length scales are independent of the microscopic detail01  

Is the behaviour at phase transitions sensitive to quantum mechanical 
effects? For first-order transitions, it is not ruled out, but the author is not 
aware of any examples. For second-order transitions (T > 0), the answer 
is no! As 	oo, the thermodynamic behaviour is determined by regions 
whose size is much greater than length scales at which quantum effects are 
important. Thus intrinsically quantum systems, such as ferromagnets or 
superconductors, can be successfully modelled by classical systems, such 
as the Ising model. For T = 0 quantum effects are importantP But a 
quantum system at T = 0 in d dimensions is related to a classical system 
in d 1 dimensions: thus even at zero temperature, classical statistical 
mechanics can be usedP 

30 L. Onsager, Phys. Rev. 65, 117 (1944). 
31 A complete discussion of the levels of description of condensed matter physics, and 

the role of quantum effects in particular is given by M.E. Fisher, in Proc. Bohr Symp., 
H. Feshbach (ed.) (Gordon and Breach, New York, 1988), pp 65-115. 
32  Quantum critical phenomena are discussed by J.A. Hertz, Phys. Rev. B 14, 

1165 (1976). 
33  The cleanest way to show this is with path integrals; see (e.g.) A.M. Polyakov, 

Gauge Fields and Strings (Harwood, New York, 1987), pp. 1-4. 
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EXERCISES 

Exercise 2-1 
This question concerns the convexity of the free energy for the nearest 
neighbour Ising model: 

-H1-2{S} = H 	+ J E sis;  

(a) Show that g(13):-.--_ 	log Zn(#)/N(S1) is convex down in /3. 
(b) By considering the second derivative of g(/3) or otherwise, show that 

the free energy per unit volume f(T) = -(1//3)g(/3) is convex up in 
T. Try to be as careful as you can. 

(c) The Gibbs free energy is defined as 

rn(m) = Fo(H(m))+ N(fl)MH(M) 

where H(M) is given implicitly by M(H) = -0f10H. Show that 
r(m) is convex down in M. 

(d) Sketch the form of F(M), f(H), M(H), M(T), H(M), for the cases 
T > Tc  and T < Tc. Quantities without the subscript St are taken in 
the thermodynamic limit. What is the form of the quantities above 
for a finite system Cl? 

Exercise 2-2 
This question concerns the infinite-range Ising model, where the coupling 
constant Jii = J for all (sometimes abbreviated by the symbol V) i,j (i.e. 
no restriction to nearest neighbour interactions). 

-Ho{S} = H E + 2  sis;  ‘77,  

You will solve this model using a method referred to as the Hubbard-
Stratonovich transformation, or auxiliary fields. Although it is noth-
ing more than completing the square, this technique is one of the most 
useful tricks in the physicist's arsenal. The virtue of the present example 
is that you will be able to calculate a partition function in an essentially 
exact way, and see precisely how it is that the thermodynamic limit or 
the zero temperature limit are required in order for there to be a phase 
transition. 
(a) Explain why this model only makes sense if Jo = J/N, where N is 

the number of spins in the system. 
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(b) Prove that 

ex p {- a  x2  = j°° 	
dy 
 e 2 V  

_EA 2 +a,v  Rea > 0. 
2N 	 27iNnTra 

(c) Hence show that 

2.11 = " dy   e —Na L. V2rINPJ 

where 
L =

2
y2  
 

— —11n {2cosh(13(H Jy))} . 

When can this expression become non-analytic? 
(d) In the thermodynamic limit, this integral can be evaluated exactly by 

the method of steepest descents. Show that 

z(0,H,J)= Ee-PNL(11,J,O,N) 

and find the equation satisfied by yi. What is the probability of the 
system being in the state specified by yi? Hence show that the mag- 
netisation is given by 

1 491nZfi M 	lim  	= I/O N(0)--.00 )3N(S2) OH 

where yo is the position of the global minimum of L. 
(e) Now consider the case H = 0. By considering how to solve the equa-

tion for yi graphically, show that there is a phase transition and find 
the transition temperature Tc. Discuss the acceptability of all the so-
lutions of the equation for yi both above and below Tc. 

(f) Calculate the isothermal susceptibility 

_ 
XT = 	• 

For H = 0, show that XT  diverges to infinity both above and below 
71, and find the leading and next to leading behaviour of XT  in terms 
of the reduced temperature t = (T —TOITc• 



http://taylorandfrancis.com


CHAPTER 3 

How Phase Transitions 
Occur in Practice 

We have explored in some detail the basic notions of phase transitions, 
and the manner in which non-analytic thermodynamic behaviour may oc-
cur in principle. Now it is time to see these ideas in action. This chapter 
presents some concrete calculations of phase transition behaviour in mag-
netic systems. Not only will we see explicitly the occurence of non-analytic 
behaviour, but we shall also make precise concepts related to spatial corre-
lations. Most of this chapter will be concerned with the transfer matrix 
method, first introduced by Kramers, which reduces the problem of cal-
culating the partition function to the problem of finding the eigenvalues 
of a certain matrix. We also describe the low temperature expansion 
and Weiss' mean field theory for magnets. 

3.1 AD HOC SOLUTION METHODS 

We start with the Ising model Hamiltonian with nearest neighbor 
interactions in one dimension: 

—110{S} = HESi J 	SiSi, J > O. 	(3.1) 
<ii> 

85 
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Define 	
h=QH 

K 

Then the partition function for N spins is 

Z0(h, K, N) = E exp {it E Si + KEsisi+11 • 

3.1.1 	Free Boundary Conditions and H = 0 

First we solve the case with no constraints on the boundary spins, 
and with the external field H = 0. Then 

N-1 
Zn = 	E exp (K >2 sisi+i) . 	(3.4) 

S1 	SN 	 i=1 

Define a new variable 

so that 

= SiSi÷i 	where i = 1...N - 1 (3.5) 

_ 	+1 	Si = Si4.1; 
-1 	Si = (3.6) 

To specify completely the state of the system, we need to provide the set 
of numbers {Si, 	,7iN_1 }. Hence we can write the partition function 
as 

Zn = E E... E eK(7,2+7,2+•.+7,.7_,) 
.51 n1 	ON-1 	 (3.7) 

=2 (2 cosh K)N-1  

The first factor of 2 comes from the sum over Si  and the N - 1 factors 
of 2 cosh K arise from factorising the sums over the n variables. 

3.1.2 Periodic Boundary Conditions and H = 0 

Now we solve the same problem, but with periodic boundary condi-
tions: 

SN+1 = S1. 	 (3.8) 

(3.2) 

(3.3) 
{s} 
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The partition function is now 

N-1 
Zci = E 	(K 	+ KsNs,) • 	(3.9) 

S1 	SN 	 1=1 

In this case, the state of the system is still specified by the variables 
• • • , 	In terms of these variables, we can write 

SN S1 = 1102 • • • 11N 1 7 	 (3.10) 

where we have used the fact that .5? = 1. The technical difficulty arises 
from implementing the periodic boundary conditions properly. One way 
to proceed is to use eqn. (3.10) in the expression for Ziv 

Zn = E 	K(nn+. ••+nN-1)-1-Krir02.-nN-1 	 (3.11) 
no 	nN-1 

00 
=2 E... > e  (ni -1-•••+nx-i ) E  (Kiii • • • 7/N-ir 	(3.12) 

cd 
nl nN-1 	a=0 

iN-1 
=2 E [EtreKn 

a=0 a' 

00 

a - 
=2 E — [eh  + (-1re-9N-1  c! 

 a=o 
=(2 cosh K)N  + (2 sinh K)N  

(3.13) 

(3.14) 

(3.15) 

3.1.3 Recursion Method for H = 0 

Another method for h = 0 is to use recursion. The partition function 
for a chain of N spins is 

Z(N )  = E... E eKs1s2+Ks2s3+•••KsN_1sN .  
S1 	s,,, 

(3.16) 

where we have used free, not periodic, boundary conditions. From this we 
work out the partition function for a chain with N +1 spins: 

Z(N 0=E...EE ns1s2+•••+siv-1sN)elcsNsN4.1. 	(3.17) 
Si 	SN SN+1 
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The sum SN.1.1 -4 eKSN +e-ICSN  Now do the remaining sums to obtain 

Z(N 	1) = Z(N)2 cosh K. 	(3.18) 

Iterating this recursion relation gives 

Z(N + 1) = Z(1)(2 cosh K)N, 	(3.19) 

i.e., Z(N) = Z(1)(2 cosh K)N-1. But 

Z(1) = E1= 2 	 (3.20) 
{S, } 

Thus, 
Z(N) = 2(2 cosh K)N-1 	 (3.21) 

in agreement with eqn. (3.7). 

3.1.4 Effect of Boundary Conditions 

Now that we have calculated the partition function in zero field using 
two different boundary conditions, let us see how they affect the ther-
modynamics. The free energy, calculated for the case with free boundary 
conditions is 

N - Fo(N,O,K)= -NkBT 1log 2 -I- . 	(3.22) [  log(cosh 

As N 	oo, 

Fn= -kBTN [log(2 cosh K) 0 , (3.23) 

which is what we would obtain from using periodic boundary conditions. 
As expected, the difference between boundary conditions becomes negli-
gible as the system size grows. 

3.2 THE TRANSFER MATRIX 

The ad hoc methods of the previous section are difficult to apply in 
the case when H 0 0. The transfer matrix method generalises the ad 
hoc methods, and can be used for h # 0, to compute correlations etc. 
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We start with the case of periodic boundary conditions: SN+1 = 

ZN(h, K) = Tr eh  Ei Si-FK 
	

(3.24) 

Now we factorise the summand as follows: 

Z N(h, K) = E...E {e  2 (51+.52)+KSI S2] {eigS2+.53)+KS2S3] 

SN 
.[d(SN-FS1)-1-KSNSii 

(3.25) 
We can think of each term as being like a matrix element of a matrix T: 

Ts1  s2  = el (si +s2)+K s2 	(3.26) 

Observe that Si  and S2 are the labels of the matrix elements: 

T= 
(

T1 T1-1  

T-1
1 
 1 T-1-1) = e —

hi 
 K e —

e
h+K) • (3.27) 

Then 
zN(h,K ) = E••• 	TS1S2TS2S3TS3S4 • • • TSNSl • 

	(3.28) 
sl  SN 

To see what this means, recall that the rule of matrix multiplication is 
that the matrix elements are given by 

A = B • C 	Aij = 	BikCkJ• 	(3.29) 

Also, the trace of a matrix is defined as 

Tr (A) = E Aii. 	 (3.30) 

Then we see that performing the sums Est  ...EsN  in equation (3.28) is 
just matrix multiplication. Thus 

ZN(h, K) = >Ts sl  = Tr (TN). 	(3.31) 
Sl  

How do we compute Tr (TN)? The factor TN  is at first sight rather 
forbidding, but we can readily diagonalise T, by multiplying and post-
multiplying with a matrix S whose rows and columns are eigenvectors of 
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T, i.e. perform a similarity transformation. Since T is real and symmetric 
ST  = S-1  and the diagonalised form of T is 

	

= S-1TS. 	 (3.32) 

This gives 
= ( Ai 0 

	

0 A2 	 (3.33) 

where Ai  and A2 are the eigenvalues of T. Now use the cyclic property of 
the trace operation, which implies that 

Tr (T) = Tr (T') 	 (3.34) 

to give 
Tr (TN) = ai + A2. 	 (3.35) 

Now consider the case that Ai  A2; the degenerate case will be discussed 
in the next section. Assuming that Al  > A2 we have 

ZN(h, K) = 	(1 + [-21N) 	 (3.36) 
Ai 

and in the thermodynamic limit N 00 

ZN(h, K) = 41  (1 + 0 (CaN  )) , 	(3.37) 

where a a-  log(A1  /A2) is a positive constant. So only the largest eigenvalue 
of the transfer matrix is important in the thermodynamic limit. The free 
energy is then given by 

lim 

We can easily compute 

det 

Solving, we obtain 

A1,2 = 

and 
FN(h, K) 

FN(h, K ,T) 	kBT log = Ai. 

are given 

= 0. 

by 

(3.38) 

(3.39) 

(3.40) 

I 

(3.41) 

kBT 

A. 

eh+K 

eK  

- kBT 

N 
The eigenvalues 

- A e-K 

[cosh h f 

log 	eic  

of T 

e-K e-h+K - A 

Vsinh2  h 	e-4K] 

[cosh h 	1,/sinh2  h e- 4K 

= -J log [cosh h 	\/sinh2  h e-4K I 

since K = #J. This is the general result for the free energy of the one 
dimensional Ising model in an external magnetic field. 
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3.3 PHASE TRANSITIONS 

How does a phase transition arise? For T > 0, the argument of the 
square root in eqn. (3.41) for the free energy is positive, for real h and K. 
This expression for f is manifestly analytic for T > 0, which agrees with 
our earlier heuristic argument that there can be no phase transition for 
T > 0 in the one-dimensional case. 

More systematically, the only possibilities for the occurence of a phase 
transition are: that Ai  is a non-analytic function of K and h, that the 
square root vanishes, in which case the eigenvalues become degenerate: 
Ai  = '2, or that Ai  = 0. For T > 0 none of these things can happen. We 
see this here by inspection, but it also follows from Perron's theorem! 

Theorem: For an N x N matrix (N < oo) A with Aii > 0 for all i, j, 
the eigenvalue of largest magnitude is: 

(a) real and positive, 
(b) non-degenerate, 
(c) an analytic function of Ajj. 

In one dimension, the transfer matrix for finite-ranged interactions sat-
isfies the requirements of Perron's theorem. Thus, we immediately find 
that 

(a) #-Ai  # 0 
(b) #-A1  A2 

(c) =ai  is analytic 

and hence that there is no phase transition for T > Q. Perron's theo-
rem can be used to show the absence of phase transitions at non-zero 
temperature in one dimension for systems with sufficiently short-ranged 
interactions. In terms of the mathematics, what is special about one di-
mension: why can the theorem not be applied in higher dimensions to 
show that phase transitions never occur for T > 0? In one dimension the 
transfer matrix for the Ising model is a 2 x 2 matrix. A little reflection (see 
the examples at the end of the chapter) reveals that in two and higher 
dimensions, the transfer matrix is a oo x oo matrix in the thermodynamic 
limit, and so Perron's theorem does not apply. 

Now let us see what happens at T = 0 or equivalently K oo. The 
largest eigenvalue of the transfer matrix becomes 

Ai  = eK [cosh hsiiVTI h (1 + 0(e-4K  ))} . 	(3.42) 

1  See F.R. Gantmacher, Applications of the Theory of Matrices (Interscience, New 
York, 1959), p. 64 et seq. 



92 
	

3 Phase Transitions: Practice 

Recalling that 	
.•/;5  = Ix!, 	 (3.43) 

we obtain 

Now 

= eK [cosh h + I sinh hl + 0(e-44] • 

(eh + e h + h - e---h) h > 0; 
cosh h + I sinh hl = ? h +e —h 	e —h) h < 0. - 

(3.44) 

(3.45) 

In other words, 

and 

Thus, 

so that at T = 0, 

cosh h I sinh 141 = elhl 

= e1C+Ihl. 

F = -NkBT (K ihi) 0(T 2) 

F = -N(J 

(3.46) 

(3.47) 

(3.48) 

(3.49) 

As mentioned earlier, we do not need to take the thermodynamic limit to 
obtain non-analytic behaviour at T = 0. The magnetisation is 

M = 	= 
N OH 	-1 H < 0, 	 (3.50) 

as expected. Note that the non-analytic behaviour came from a term 
= IN. For T > 0, this term is of the form (see eqn. (3.40))0/717.1- E2 

which is analytic at h = 0 as long as the constant c 0 0. 

3.4 THERMODYNAMIC PROPERTIES 

We start with the case h = 0. Then 

Al = eK(1 e-2K) = 2 cosh K 
	

(3.51) 

and Z = (2 cosh K)N as N 	co. This is not in contradiction with 
eqn. (3.15), because in the thermodynamic limit, we have dropped the 
contribution of A2 to eqn. (3.51), which in this case is (2 sinh 

The free energy is then 

F = -kBT N [K + log(1 + e-21c)1 
	

(3.52) 
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with low and high temperature limits 

fN E-7 FIN = —kBT log2 T oo
(IC  
(K 0)

)
.
; 	(3.53)  

As anticipated, the high temperature limit corresponds to the entropy 
dominating the free energy, whereas the low temperature behaviour is 
determined mainly by the energy. 

The specific heat is simply obtained from the internal energy E: 

Therefore 

E = —1- log Z 0/3 

= —N—a 
log(2 cosh pJ) 

= —NJ tanh 

C= dE 	1 dE 
— — dT 	kBT2  d0 

(3.54) 

(3.55) 

(3.56) 

2  = NJ 2sech2(J1kBT). 	(3.57) kBT 

The heat capacity does not exhibit any singularity, but note the pres-
ence of a peak near J kBT, which is sometimes known as a Schottky 
anomaly. 

To calculate the magnetisation, write the free energy per spin in the 
form 

= —J — kBT log [cosh h V/sinh2  -Fw2 ] , 	(3.58) 

where w2 	e-4K  is the relative probability of the two configurations 
below, which differ by a single spin flip: 

TlITT 	TUTT • 

Thus 

1 OF 	1 OF M = 	= — 
N OH NkBT Oh 

= —ah  log [cosh h \/sinh2  h w2 ] 
sinh h 

(3.59) 
Vsinh2  h w2  
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M 
K=a, (T=0) 

K=0(I) 

	a-h 

Figure 3.1 Magnetisation as a function of external field at zero temperature (K = oo) 
and at non-zero temperature (K = 0(1)). 

The isothermal magnetic susceptibility XT  describes how the magneti-
sation changes in response to an external field: 

OM 

h N h and 

• 

Law); 

(3.60) 

(3.61) 

(3.62) 

(3.63) 

(3.64) 

XT = oll. • 

What happens for small fields h 	0? Using sinh 

M 	— = he2K  

H
kBT 

= e2K 

we find 
e2K 	e2J1kBT 

	

XT = kBT = 	kBT 
The low and high temperature behaviours are 

XT 	l 1/kBT, 	as T 	oo (Curie's 
e(2J1kBT) ABT, 	as T 	0. 

Note the exponential divergence at zero temperature. 



3.5 	Spatial Correlations 	 95 

XT e2J/ kBT 

T 

I/ T 

K=0(I) 

Figure 3.2 Isothermal susceptibility as a function of temperature at vanishing field. 

3.5 SPATIAL CORRELATIONS 

We can use both the transfer matrix and an ad hoc approach to cal-
culate correlation functions. 

3.5.1 Zero Field: Ad Hoc Method 
For T > 0, we have seen that 

(Si) = 0. 

The two-point correlation function is defined as 

G(i,j) = (SiSi)— (Si) (Si) = (SiSi) 

(3.65) 

(3.66) 

for h = 0 and i < j. The two-point correlation function may be written 
in the slightly more transparent form: 

G(i,j)= ((Si — (Si))(Si — (Si))) 	(3.67) 

showing that G actually measures the correlation in the fluctuation of the 
spins at different sites. G(i, j) is also related to the probability P13 that 
spins i and j have the same value: 

Pii (ösisj ) 	 (3.68) 

(

1 
i(1 SiSi)) 	(3.69) 

= —2 
1 

+ 
1 
 [GOO 

• 
) + (Si)  (Si)]. 	(3.70) 
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T =CO 
T=0 

0 

Figure 3.3 Nearest neighbour correlation function. For T 0, the neighbours are 
strongly correlated, whereas for T oo, the neighbours are not correlated at all. 

Proceeding to the calculation, we first replace the exchange between spins 
i and j by Jij, a value that, in principle, varies from bond to bond on the 
chain. Then 

G(i,j) — 	1 	E...E sisieKisis2+1c2s2s3+....KN-2SN-14 . (3.71) 
ZNIKi} 

SN 

Now we will derive the form of G(i,j) by successive differentiation. There 
are two steps to the argument. First, we let j = i + 1, and calculate 
G(i, i 1). Then we show how we can obtain G(i, i j) from this. 

Step 1: j = i + 1. Write eqn. (3.71) as 

1 0 
(SiSi+i) =---zN 0Ki  Es.  

1 0 ,7 	0 	r, 
= 

	

	 LiN = - log 
ZN aKi 

We can find ZN{Ki} from our previous argument when all the Ki = K 
— we simply get factors of cosh Ki instead of cosh K at each recursion. 
Thus 

and 

N-1 

ZN{Ki} = 2N  H cosh Ki 
i=i 

(3.73) 

(SiSi+i) = tanh Ki = tanh 134 	(3.74) 

Putting Ki = K, and inspecting the sketch, shown in figure (3.3), we see 
that neighbours are strongly correlated at low temperature (K —3> oo), 
whereas at high temperature (K 0), the correlations diminish. 

S24,--1-KN-1SN-1SN 

SN  (3.72) 
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We could also have got the result (3.73) by calculating the energy. 

E = (He) = —J E (SiSi+i) 	 (3.75) 

= —NJ tanh PJ (from eqn. (3.56)). 	(3.76) 

But (SiSi+i) does not depend on i in a translationally invariant state, so 

—J 	(sisi+i) = —NJ (SiSi+i) = —NJ tanh )3.1. 	(3.77) 

Thus 
(SiSi+i) = tanh/3J 

in agreement with eqn. (3.74). 

Step 2: How do we go beyond (SiSi+i)? Notice that 

1 	0 	0 
ZN 	

c, c, 	c, 
= ‘ajoi+10:1-1•3i-1-21 ZN OKi OKi+i 
= (Si S42 ( 5'41 )2) 
= (Si5.42) • 

where we have used the fact that S? = 1. Therefore 

G(i, i 2) = tanh Ki • tanh Ki+i • 

Proceeding by induction, 

G(i,i j)= (SiSi+j) 
1 0 0 	0  

ZN{Ki} 
ZN OKi N.(41 • • • inci+j_1 
= tanh Ki tanh Ki4.1 tanh 

Now set all the Ki = K: 

(3.78) 

(3.79) 
(3.80) 

(3.81) 

(3.82) 

(3.83) 

G(i, i j) = (tanh K)' . 	(3.84) 

The result is translationally invariant as expected when K1  does not de-
pend on i. G(i, i + j) only depends on j. In a continuous system such as a 
fluid, the analogous statement is that the two-point correlation function 
satisfies G(r, r') = G(r — r'). This applies even for a finite system, as 
long as i,j are not near the boundaries, and for a system with periodic 
boundary conditions. 
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3.5.2 Existence of long-range order 
What do we learn from the two-point correlation function? As ex- 

pected, there are two possible cases: 
For T = 0 (K = oo), we have tanh K = 1 and 

G(i, i j) = 1 for all j. 	(3.85) 

Thus, at zero temperature, the probability that Si = Si is unity for all 
j. This is a perfectly correlated state, and one that exhibits long range 
order. The two states of the system consistent with this are 

11111 • • • 1' 
and 11111 •• • 1 	 (3.86) 

For T # 0 (K oo) we have that tanh K < 1 and coth K > 1 
log coth K > 0. Therefore, for j > 0, we can write 

G(i, i j) = e-ilog(cothIC), 	(3.87) 

showing that correlations decay exponentially for T > 0. The correlation 
length e is defined by 

G(i, i + j) = 	(3.88) 

where e is measured in units of the lattice spacing a. From eqn. (3.87) we 
can read off 

( 
1  

= 
log(coth K)• 	

3.89) 
 

From eqn. (3.88), we see that e is a measure of the length over which 
spins are correlated with probability Ps-,  1. As K 	oo i.e. as T 	0, 
the correlation length diverges to infinity, whereas at high temperature, 

-+ 0. How does e approach infinity as T --+ 0? For K » 1 
eK e-K 

coth K = eK e—K 1 + 
2e-2K + o(e-4K). 	 (3.90) 

Therefore 
e2K .T4_7, 	

(3.91) = -e 
2 2 

as T --> 0. There is an essential singularity in the correlation length as 
the temperature approaches zero, which is the transition temperature in 
this model: e diverges exponentially fast. In fact, we shall generally find 
that near a continuous transition, the correlation length diverges with 
some exponent v, but the correlation length varies according to E(T) 
(T - TO-11  as T -> Tc, and not e N  exp[J1kB(T - Tc)], as we have in this 
one dimensional example. 

e = 
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3.5.3 Transfer Matrix Method 
Correlation functions can also be computed using the transfer matrix 

formalism. The basic trick is as follows: 

	

(Si)  = —z E E 
	

(3.92) 
Sl 	SN 

= 
1 
E 	E [Ts, ,92Ts2s3  • • • Tss _is, S2Ts,s,+1  • • .] (3.93) 

SN 

Focus on the section of the string of transfer matrices near Si: 

E Ts,_,,,, Si Tsisi+, • • • 	 (3.94) 

The result of this string is itself a matrix, A, whose ab element is 

Aab = E TaSiTSibSi• 
	(3.95) 

Si 

But this is the same as 

A  = T  ( 01 	IT. 	 (3.96) 

The matrix sandwiched between the transfer matrices is one of the Pauli 
matrices, usually denoted by oz. Finally, using the cyclic property of the 
trace operation, 

(Si) = 1Tr (crzT N). 	(3.97) 

We can evaluate this expression by using the similarity transformation 
eqn. (3.32) and the cyclic property of the trace: 

Tr {S —lazS (T')N1 
(3.98) 

(3.99) 

(3.100) 

(Si) = 
Tr (T')N  

We can explicitly compute S: let 

X(1) = (a) 

X(2) = (c) 

• 
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be normalised eigenvectors of T with eigenvalues A1,2. Then 

S- 	ab de  )• 

s--'0.zs = ( fe  fc ), 

(Si) _ 
eAiv + k4 

AN _t_ AN 1 1 2 

using the result that 

(Ti) N  =I Ai' ° 1 k 0 	47  ) • 

Write 

so that 

(3.101) 

(3.102) 

(3.103) 

(3.104) 

Note that in the above equations, e, f, g, k etc. are all functions of h, K, 
which can be explicitly evaluated (see the exercises at the end of this 
chapter!). In the limit that N --> oo 

(Si) ,s,  e(T,H,J). 	(3.105) 

Similarly, the two-point correlation function is 

(SiSi+j) = 3-Tr {(S-1crzS)(11(S-1crzS)(T')N-il 	(3.106) 

In the limit N co 

(Sisi+ j)  = e2 + fif  (Ly 
A1 , 

and the correlation function becomes 

G(i, i + j) = (SiSi+j) - (Si) (Si) 

= gf(-Al)i Al  
= g f exp [- jlog(Ai / A2)] • 

We can read off the correlation length 

1 
.- 

log(Ai/A2)' 

(3.107) 

(3.108) 

(3.109) 
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and since Ai  > A2  we see again that correlations decay exponentially to 
zero for T > 0. 

We can also check our previous results for h = 0: in that case 

Al  = 2 cosh K 

A2 = 2 sinh K 
	

(3.110) 

and 

e — log coth K 

which agrees with our earlier result (3.89). 

Note: 
(1) e cannot diverge unless Ai  = A2. There cannot be a phase transition 

unless the largest eigenvalue of the transfer matrix becomes degener-
ate. This is a general result. 

(2) For h # 0, Al  > A2, so there cannot be a phase transition for h 0 0. 
(3) For h = 0, Al  = A2  when K = oo, so that a phase transition can occur 

at T = 0, as we have already seen. 

3.6 LOW TEMPERATURE EXPANSION 

Before we leave the topic of the d = 1 Ising model, let us briefly intro-
duce another method for studying the free energy systematically. This is 
the low temperature expansion. The basic idea is to start at T = 0, 
and then raise T slightly. If the ground state is stable with respect to 
thermal fluctuations, then it should be possible to do perturbation theory 
about it, in a variable which corresponds to the number of flipped spins. 
Here, we will perform this expansion in d dimensions on a hypercubic 
lattice with coordination number z = 2d. At zero temperature, all the 
spins are aligned. Choose the ground state T, and recall the Hamiltonian 
in zero field 

110{S} = —J E 	(3.112) 

For T > 0 it will be possible for 1,2, ... k, ... spins to be flipped. We 
will portray the spin configurations with flipped spins in a schematic 
way, showing the portion of the lattice with the flipped spins only. The 
probability of a large number of spin flips is small, so we can perturb as 
follows, only going up to the case of two flipped spins here. Without loss 
of generality, we will consider them to be in adjacent rows. Let g denote 
the degeneracy of each configuration, and E its energy. 

1 
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Ground state: 

One spin down: 

1111111 E = E0  = 
1111111 go= 1. 

J N z 
2 (3.113) 

111111 E = El) -I- 2J z 
1111111 91 = 

Two spins down: 
(a) Spins are nearest neighbours 

1111.1.11 E = E0 + 2J (2z - 2) 
• 1111111 92a = Nz/2! 

(3.114) 

(3.115) 

(b) Spins are not nearest neighbours 

1111111 
E = E0  + 2J (2z) 

—  
1111111 926 = (1‘1') 	

N(N 1— 2d) 	(3.116) 
dN - 	2 	• 

This process is clearly rather tedious! Now we can write the partition 
function as 

Z =110-0E0 	gee—OE2 	(3.117) 

=eNJd13 (1+  Ne-413Jd dNC4 f3J(2d-1)+ 

N(N - 1 - 2d) e_ojd  ...) 
2 

Recalling the variable w2  = e-4•11  , we write the free energy as 

F = -kBT log Z 
= - dJN - kBT log {1 N(w2)d ar(v2)2d-1+ 

(w2)2d N(N  -21 - 2d)  + .1 

It is not at all obvious that the expansion in the log will give a free energy 
per unit volume (per site) independent of N. Let us check that it does. 
Write 

F = -dJN - kBT log (1 E Bk) 

	

(3.120) 

(3.118) 

(3.119) 



3.6 	Low Temperature 

where Bk are the terms 

Bl  = N(w)d  

and consider separately 

3.6.1 	d > 1 

For d > 1, Bk < Bk—i. 

considering Bk to be of 

log 

B2  = dN(w2)2d--•, 

Expansion 

from k flipped spins: 

N(N -1- 2d) 	2 2d 

103 

(3.121) 

(3.122) 

(3.123) 

(3.124) 

the two cases 

Now expand 

log(1 + c) 

order ck. To 

1 + EBk  ( 	
k 

(w ) 2 
d > 1 and d = 1. 

c2 

2 
= c - — + ... 

second order we find that: 

1 
Bi + B2 — —2Bi  :::-... 

Note that for d > 1, B2 = 0(B?). This is not true in d = 1, and we will 
say more about this shortly. Evaluating 

B2 	N 2 	N =N(w2)d + dN(w2)2d-i + 2 (w2)  2d - _2(w2)2d B1  + B2 - 	 _ 

dN(w2)2d _ N22  (w2)2d 

=N  [w2d d(w2)2d-1 (d  + 12:)(w2)2d] 

(3.125) 
The N2  terms do cancel! Therefore 

f  = 	= -dJ - 113 (wed + d(w2)2d-i - (d+  2:2)(w2)2d) 	(3.126) 

3.6.2 d=1 
What happens in d = 1? From the transfer matrix calculation after 

the thermodynamic limit has been taken, 

f = -kBT log(2 cosh K) = -kBT log (eK  e-9 
= -kBT log eK (1+ e-2K) = -J - kBT log (1 e-2K) 

= -J - kBTe-2J1kBT 	(3.127) 
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The factor e-2,7ficBT  is in apparent disagreement with the result from the 
low temperature expansion, eqn. (3.126). What has gone wrong? One way 
to state the problem is the non-commutability of the limits T 	0 and 
N 	oo. To see that this is the case, consider the transfer matrix result 
at finite N. From the partition function 

ZN = (2 cosh K)N  -I- (2 sinh K)N  
= eNK [(1 e-29N + (1 _ e-291 

	
(3.128) 

we obtain 

FN = -NJ - kBTN2e-4K  0 ((N2e-41C)2) 
	

(3.129) 

i.e. 

f = 	= 	- kBTNe-4K 
	

(3.130) 

In the thermodynamic limit, this expression does not reduce to eqn. 
(3.127). Furthermore, as N -4 oo, the free energy becomes unbounded 
from below, indicating that the ground state with energy E/N = -J is 
not stable for T > 0. This non-commutability of limits is another reflec-
tion of the fact that long range order is destroyed in d = 1 for T > 0. 

We can now see that the low temperature expansion, attempted in 
eqn. (3.118) is only valid for d > 1, where the requirement that Bk de-
creases with increasing k is satisfied. In d = 1, the terms coming from 
clusters of down-turned spins, which are next to each other, violate this 
requirement. The "problem term" in the low temperature expansion is 
that of eqn. (3.115): two spins down being nearest neighbors contribute 
the term d(w2)2d-1  to eqn. (3.127). In d = 1, this term, from a cluster 
of two spins is of the same order as the term (w2)d coming from a single 
spin reversal. This pattern is repeated as we consider three spin reversals 
etc. Thus, in d = 1, blocks of adjacent reversed spins are the dangerous 
thermal fluctuations which are excited for any T > 0, and which destroy 
the low temperature, or zero temperature ground state. This calculation 
makes concrete the physical argument presented in section 2.8.2 

3.7 MEAN FIELD THEORY 

We end this chapter with a brief look at an important topic - mean 
field theory. Mean field theory is the simplest treatment of an inter-
acting statistical mechanical system, apart from the approximation of 
ignoring the interactions all together. Often it is almost trivial to perform 
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the mean field theory calculations, although not always: in complex situ-
ations, where spontaneous symmetry breaking is accompanied by replica 
symmetry breaking, even the mean field theory is exceedingly difficult. 

The term "mean field theory" conveys an impression of uniqueness, 
but this is false: there are many ways to generate mean field theories. All 
share in common the nature of the scaling near the critical point (which 
is erroneous usually, for low enough dimension), but other non-universal 
features may be better calculated in one form of mean field theory than 
another. In the next section, we will present a simple, non-systematic 
derivation of mean field theory for the Ising model. This mean field theory 
can be easily improved by applying it to clusters of spins rather than 
individual spins? The reader is invited to work through various systematic 
developments of mean field theory, presented in the exercises to this and 
the previous chapter. These systematic techniques provide a good starting 
point for the renormalisation group theory of critical phenomena. 

3.7.1 Weiss' Mean Field Theory 
As usual, we start with the nearest neighbour Ising model Hamiltonian 

in d dimensions: 

H0{S} = —J E sis;  - H >2 Si. 	(3.131) 
(ii) 

Suppose for the moment that the spins are independent: J = 0. Then 

Za{0, 	= Tr (e(311 + e'SH) = [2 cosh(H kBT)]N  

The magnetisation is given by 

1 OF M = — N OH 
= tanh(H/kBT). 

(3.132) 

(3.133) 

So far, with J = 0, we have been describing a paramagnet. Weiss tried 
to understand what happens when J # 0 by postulating that each spin 
experiences the presence of an effective field Heff  due to the magnetic 
moment of all the other spins. This magnetic moment would be propor-
tional to the magnetic moment M of all the other spins, which is itself 

2  For example, the cluster method of R. Kikuchi, J. Chem. Phys. 53, 2713 (1970). 
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Figure 3.4 Graphical solution of the mean field equation for the spontaneous mag-
netisation. 

unknown ab initio. Thus, a given spin experiences both the externally 
applied field and the effective field due to the other spins. The combina-
tion of the two fields then determine the response of the given spin i.e. 
its average magnetic moment. But there is nothing special about the spin 
which we have chosen; thus, its moment must be the average magnetic 
moment M. In this way, we are able to calculate M self-consistently. 

To see this explicitly, we observe that we can write the Hamiltonian in 
the form appropriate to a paramagnetic spin in a site-dependent effective 
field Hi: 

Hc,{s}  = —E S=H= 	 (3.134) 

where 
= H 	E Jii (Si) E.Ii;  (Si — (5i)) . 	(3.135) 

Here, the first term is the external field, the second is the mean field, 
and the final term is the fluctuation, which we will now ignore. If the 
spins reside on the vertices of a d-dimensional hypercubic lattice, then 
the co-ordination number z of each site is 2d, and 

Hi = H 2dJ M. 	(3.136) 

From eqn. (3.133), we find 

M = tanh 
(HdJ 

k 2 
	M  

(3.137) 
BT 

Even in the absence of an external field H, we can apply the same idea 
to find the spontaneous magnetisation. Setting H = 0, we obtain 

M = tanh (2dJM/kBT) . 	 (3.138) 
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This is best visualised graphically, as shown in figure (3.4). For T > 
Tc s-.2dJ1kB, the tanh curve lies below y = M, and the only intersection 
is at M = 0. For T < T, it intersects at ±Ms(T). Non-analyticity arises 
because of the way that the solution to eqn. (3.138) changes as T varies. 
Thus, in mean field theory, we find that the critical temperature is 

Te  = 2dJ . 	(3.139) kB  
We can study the critical behaviour afforded by this description, by ex-
panding the equation of state (3.137) in the vincinity of Tc. Let r = Tc/T. 
First, we invert eqn. (3.137) to obtain the equation of state: 

tanh HABT tanh Mr 
1+ tanh HIkBT tanh Mr 

Thus 
M — tanh  Mr  tanhHABT = 1— M tanh Mr.  

For small H and M, we can expand in powers of M to find 

(3.141) 

r3  
kBT 	

M(1— r) + M3  (7" — 72  + —
3 

-I- (3.142) 

Now we can extract the critical exponents for the ferromagnetic tran- 
sition, as calculated in mean field theory: for H = 0 and T 	T; , eqn. 
(3.142) implies that 

m2 	3(T, — T)  + 	(3.143) 

where the dots indicate corrections to this leading order formula. We can 
read off the critical exponent /3: /3 = 1/2. The critical isotherm is 
the curve in the H—M plane corresponding to T = Tc. Its shape near the 
critical point is described by the critical exponent b: 

H N M6. 	(3.144) 

Setting r = 1 in the equation of state (3.142), we find 

kBT 
showing that the mean field value of 45 is 3. The isothermal magnetic 
susceptibility XT  also diverges near 71: 

OM 
XT E OH  

M = tanh (H/kBT + Mr). (3.140) 

H ev M3, 	 (3.145) 

(3.146) 
T 
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Differentiating the equation of state (3.142), gives 

1  
kBT — XT(1  — 7) 3M2  XT(7  — 2 + 

3 
 ). 

For T > Tc, M = 0 and 

1 	1  
X 	+ ... • T - kB T— Tc  

Comparing with the definition of the critical exponent 7: 

XT  N IT — Tc  P, 

we conclude that -y = 1. For T < Tc, 

T — T)1  /2  M 

Substituting into eqn. (3.147) gives 

1 	1 
XT = 	+ • • • , 2k B T —Tc  

(3.147) 

(3.148) 

(3.149) 

(3.150) 

(3.151) 

which shows that the divergence of the susceptibility below the transition 
temperature is governed by the critical exponent 7' = ry = 1. The calcula-
tion of the critical exponent a, which governs the divergence of the heat 
capacity near the transition, is straightforward. The result is that the heat 
capacity exhibits a discontinuity at T = Tc, in mean field theory. 

3.7.2 Spatial Correlations 

The mean field theory presented here is not at the level of sophistica-
tion that we can extract complete details of the spatial correlations. One 
might have thought that mean field theory and spatial correlations were 
antithetical: how can there be interesting spatial correlations when the 
fluctuations have been averaged out over the entire system? The answer 
is that the correlation length not only governs the spatial extent of fluc-
tuations of the order parameter, but also governs the way in which the 
order parameter varies in space in response to an inhomogeneous external 
field. Given such a perturbation on the system, one can still construct 
a self-consistent solution for the order parameter in the spirit of mean 
field theory, and we will see this in detail when we discuss the general 
framework of mean field theory, namely Landau theory. 
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For now, we can proceed using thermodynamic arguments and an in-
teresting identity, known as the static susceptibility sum rule. This is 
an important relation between a thermodynamic quantity - the isother-
mal susceptibility - and the two-point correlation function. The derivation 
is as follows. 

First, we define the two-point function: 

G(ri - ri) = (SiSi) - (Si) (Si), 	(3.152) 

where ri is the spatial position of the spin Si. For future reference, the 
expectation values above may be obtained by differentiating the partition 
function with respect to the external field: 

and thus 

and 

= Tr exp 

(Si) 

E (St 

[fiJ > sisi  + H 
<ii> 

-Tr =T.Esze-oH. 

(3.153) 

(3.154) 

(3.155) 

1 	04(H , J) 
132'n 	OH 

	

S,}_ 	
1  

/32Z0 0H 2  • 

Now let us construct a general expression for the isothermal susceptibility: 

OM 	1 02  log Za  
(3.156) 

XT  - OH - A rfi OH2  

T kBT oH2  
[ 1 a2zo 	1 	\2  

(8H j 	(3.157) 

1 
= .17(kBT)-1  [E (SiSi) - (E (Si)) 

	
(3.158) 

1 = -5 (kBT)-1  E G(ri - 	(3.159) 
ij 

= (kBT)-1  >G(xi) 	 (3.160) 

= (adkBT)-1  la cer G(r). 	(3.161) 
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This is an important result, because it connects the divergence in XT 
with the two-point correlation function G: apparently, G must reflect the 
divergence of XT. We will see later that for Irl > E, 

G(r) (3.162) i ri(d-1)/2ed-3)/2 ,  

where e is the correlation length. Since G decays so rapidly at infinity, 
the integral in eqn. (3.161) should be convergent. Yet, we know that as 
T 	XT, diverges, and therefore, so must the integral. The resolution 
of this apparent conundrum is that the correlation length also diverges, as 
we saw explicitly in the transfer matrix calculations for d = 1 and T -4 0. 

We can calculate how the correlation length diverges, using the result 
that 7 = 1. From eqns. (3.161) and (3.162), we have 

- Tc)
-1 	rd-le-rit 

Tc 	 r(d-1)/2e(d-3)/2 
dr  

(jz(d-1)/2e-z dz) e,  
(3.163) 

where we made the substitution z = r g (i.e. the scaling trick). The 
integral is a well-defined constant, and thus we find that the correlation 
length does indeed diverge as 

with 

( T - Tcy' 
TC  ) (3.164) 

v = 1/2. 	 (3.165) 

Finally, we mention the critical exponent 77. It describes how the two-
point correlation function behaves at large distances exactly at the critical 
point. We will later see that the same mean field theory calculation which 
yields eqn. (3.163) for the long distance behaviour near the critical point 
also predicts that 	

G(r)  e„, 	 (3.166) 

with 77  = 0. In principle n  can be non-zero. 
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Table 3.1 CRITICAL EXPONENTS FOR THE ISING 
UNIVERSALITY CLASS 

Exponent Mean Field Experiment Ising (d = 2) Ising (d = 3) 

a 0 (disc.) 0.110 — 0.116 0 (log) 0.110(5) 
1/2 0.316 — 0.327 1/8 0.325±0.0015 

7 1 1.23 — 1.25 7/4 1.2405±0.0015 
3 4.6 — 4.9 15 4.82(4) 

1/2 0.625±0.010 1 0.630(2) 
ii 0 0.016 — 0.06 1/4 0.032±0.003 

3.7.3 How Good is Mean Field Theory? 

Table 3.1 compares critical exponents calculated in mean field theory 
with those measured in experiment or deduced from theory for the Ising 
model in two and three dimensions. The table is essentially illustrative: 
the values given are not necessarily the most accurate known at the time of 
writing. In addition the experimental values are just given approximately, 
with a range reflecting inevitable experimental uncertainty. The values 
for v and 5 are not independent from the other values, obtained using 
scaling laws. The experimental values quoted are actually obtained from 
experiments on fluid systems? Our discussion of the lattice gas model 
implies that these fluid systems should be in the universality class of the 
Ising model. Indeed, this expectation is borne out by the comparison of 
the experimental values and those from the three dimensional Ising model. 
The latter values are in some cases given with the number in brackets 
representing the uncertainty in the last digit quoted 

The numerical values of the critical exponents calculated from mean 
field theory are in reasonable agreement with those given by experiment 
and the Ising model in three dimensions, although there are clearly sys-
tematic differences. First of all, the mean field theory exponents here do 
not depend on dimension, whereas it is clear that the exact critical ex-
ponents do. It is possible for mean field theory to exhibit exponents with 
a value dependent upon dimension. An example is the mean field theory 

3  J.V. Sengers in Phase Transitions, Proceedings of the Cargese Summer School 1980 
(Plenum, New York, 1982). 

4  J.C. Le Guillou and J. Zinn-Justin, Phys. Rev. B 21,3976 (1980); numerical values 
and details of the calculational techniques used to obtain these estimates are given by 
J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Clarendon, Oxford, 
1989), Chapter 25. 
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(MFT) for the size R of a self-avoiding random walk of N steps: 

3 
R 	, 	vmFT — 2 +  d.  (3.167) 

In this case, however, the dimension dependence is quantitatively inaccu-
rate. Secondly, the values are slightly but definitely in error. 

Despite these observations, it is worth dwelling on the success of mean 
field theory. In the next chapter, we will describe mean field theory for 
fluid systems, and we shall find that the critical exponents have the same 
values there. So mean field theory does exhibit universality, a feature 
that emerges from the general framework of Landau theory. Furthermore, 
mean field theory has predicted the correct phase diagram in this case, 
and provided an expression for the critical temperature. These predictions 
are not always reliable, but always provide a good first step to a more 
complete theory. Unfortunately, we will need to work very hard to improve 
mean field theory. 

EXERCISES 

Exercise 3-1 

This question is an exercise in the use of the transfer matrix method. In 
the first parts of the question, we deal with the d = 1 Ising model with 
periodic boundary conditions. 
(a) Construct the matrix S which diagonalises the transfer matrix T: that 

is, T' = S-1TS is diagonal. You will find it helpful to write down the 
matrix elements in terms of the variable 4  given by 

cot(24) = e2K  sinh(h). 

(b) Check that you understand why 

Tr  
(S.) — 	

(SazS(InN)  
ZN 

and use your answer to part (a) to show that (Si) = cos(20) as N 
co. In a similar fashion calculate (SiSi) and hence show that in the 
thermodynamic limit 

G(i, i j) = (SiS i) — (Si) (Si) = sin2(20) C--2) . 
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(c) Calculate the isothermal susceptibility XT  from the formula given for 
M(H) in the text. Verify explicitly that XT  = Ej  G(i,i j)IkBT. 
(Caution: In the thermodynamic limit, the sum runs over -oo to 
+oo.) 

(d) Now we will examine what happens when the system has boundaries. 
Consider the partition function with free boundary conditions: 

+K(sis2+—FsN-isN)
Sl 	

. ZN(h, K) = E E  
SN 

In this case, the partition function is not simply Tr (r)N. Work out 
what the correct expression is (you will need to introduce a new matrix 
in addition to T), and show that the free energy FN is given by 

FN = N fb(h, K) f s(h, K) + Ff s(N , h, K) 

where fb is the bulk free energy, f3  is the surface free energy due to the 
boundaries, and Ff  ,(N ,h, K) is an intrinsically finite size contribution 
which depends on the system size as e —C(h,K)N where C is a function 
of h and K . 

(e) Check that in the case h = 0 and N -+ oo your result for the surface 
free energy agrees with that obtained from 

	

	Fist:Tree 
 

periodic 

(notation should be obvious). 

Exercise 3-2 
This question invites you to generalise the transfer matrix formalism to 
the two dimensional Ising model on a square lattice. Suppose that there 
are N rows parallel to the x axis and M rows parallel to the y axis. We 
will require that N -+ co whilst we will calculate the transfer matrix for 
M = 1 and M = 2. Periodic boundary conditions apply in both directions, 
so that our system has the topology of a torus. The Hamiltonian HO is 
given by 

N M 
= K EE SmnSm+in SmnSmn+1 

n=1 m=1 
(a) For the case M = 1 show that the transfer matrix is a 2 x 2 matrix, 

and show that its eigenvalues are 

Ai  = + x2 	A2  = x2 _ 1 

where 
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(b) Now consider the case M = 2. We need to extend the transfer matrix 
formalism. Consider the vector 

V n = (Sin 52n • • • Sinn). 

This vector gives the configuration of a row n. Show that 

HSt = E Ei(vn, vn+i) + Ez(vn) 
n=1 

where E1  is the energy of interaction between neighbouring rows and 
E2 is the energy of a single row. Hence show that 

Z = 	E Tvi V2 TV2V3 • • • TVNV1 
••*VN 

where T is a transfer matrix of dimensions 2M x 2M, whose form you 
should give. 

(c) Calculate T for the case M = 2. 
(d) Show that the two largest eigenvalues are 

= (x4 + 2  4. x-4 + 48 + x-8 + 14) /2 

and 
A2 = X4  — 1. 

Exercise 3-3 
In the previous chapter, you studied the infinite range Ising model, and 
showed how a phase transition can occur in the thermodynamic limit. 
Your results were very similar to those of the Weiss model of ferromag-
netism, because in a mean field description such as the Weiss model, 
every spin is interacting with every other spin. In this question, we will 
look at the nearest neighbour Ising model, and systematically derive mean 
field theory by the method of steepest descents. This approach, based on 
the Hubbard-Stratonovich transformation is probably the most general 
method for turning statistical mechanics problems into field theories. We 
will see that mean field theory just comes from taking the maximum term 
in the partition function. The Hamiltonian is 

1 
H0{5} = E 	- E HiSi 

2 
i#i 
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where Jib = J > 0 if i and j are nearest neighbours and 	= 0 otherwise. 
In this question, we will use Einstein's summation convention: repeated 
indices are to be summed over, i.e. Aiixj Ei  
(a) Prove the identity 

co  N ) ex_ ( x.A..x. x.Bi 	1_ 	els;  (A-1);;B;  
J--00 i=i 	P 	2  I i) 3  + 	(.117t7  

where A is a real symmetric positive matrix, and B is an arbitrary 
vector. [Hint: Make change of variables yi = xi - 

(b) We want to use the above identity to make the term in the Hamil-
tonian with SiSi linear in Si, just as you did for the infinte range 
model. Why can you not do that straight away? Show that this tech-
nical point is easily dealt with by a trivial redefinition of the zero of 
energy. 

(c) Apply the identity of part (a), making the identification AiTil  = Jib  
and Bi = Si. Show that 

Z = 1-: i=1lldoie-13s(fibi),{HiM.14)) 

where 

1 
S = 

2 
-(Abi - H 0.1;3:1  ( tPj - Hi) - 1  -a  E log(2 cosh POO. 

This form for the partition function is really what is meant by the 
term functional integral. The dummy variable th is like a function 
OW in the limit that the lattice spacing a 0 and N -+ oo. 

(d) Assume that we can approximate Z by the maximum term in the 
functional integral: Z exp -S(th) where is the value of the field 
tki which minimises S. Find the equation satisfied by iii, and show 
that the magnetisation at site i, 

ri (Si) = —0F1 °Hi "4 -05/0.11i 

is given by mi = tanh Aki. Hence find Hi({mil). 
(e) Let S be the value of S at tki = ti. The mean field approximation is 

that the free energy F ^..-1 S. Show that 

1 	1 	 2  
3({mi}) = - - Elog 

2 	 1"7--m? 
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Hence calculate the mean field approximation to the Gibbs free energy 
from the Legendre transform 

ond =3.+EHignomi. 

Verify that the equation of state is correctly given by Hi = Or/8m;. 

Exercise 3-.4 

Now we will use our mean field solution of the Ising model to solve the 
lattice gas model. Set U1  = 0, and check that you understand the cor-
respondence between the lattice gas variables and the Ising variables. In 
particular, write down the relation between the pressure and the free en-
ergy of the Ising model. Also, write down the relation between the mean 
density p of the lattice gas and the mean value of the magnetisation of 
the Ising model. 
(a) Express E0  in terms of H and J. Using the result of 3-2, rewrite this 

in terms of H and Tc. Write down the relation between the pressure 
p, H(m) and 5(m), using the results from 3-2 for the uniform mag-
netisation case. Hence show that the equation of state in the mean 
field approximation is 

1 
p = kBT log 1  —/;) — 2kBTcP2 

(b) Show that at the critical point for the fluid (p*, p*, T*), 

p* = kBTc(log 2 - 1/2), 

and T* = Tc, p* = 1/2. This corresponds to the critical point H = 0, 
T = Tc  in the Ising model. 



CHAPTER 4 

Critical Phenomena in Fluids 

In this chapter, we shall discuss the critical phenomena at the liquid-
gas transition, with particular emphasis on the description given by the 
Van der Waals equation. The Van der Waals equation gives a qualitatively 
accurate account of the phase diagram of fluids, exhibits properties such as 
the law of corresponding states and gives a mean-field theory of the liquid 
gas critical point. Apart from its intrinsic interest, the mean field theory of 
the liquid-gas critical point is presented here to emphasise the similarities 
with the mean field theory of magnets, discussed in the previous chapter. 
These structural similarities form the basis of the general theory of phase 
transitions at the mean field level — the Landau theory. 

4.1 THERMODYNAMICS 

4.1.1 Thermodynamic Potentials 

Here we give a rapid review of the fundamental thermodynamics of 
fluids and phase equilibria. Working in the grand canonical ensemble, we 
consider the thermodynamic potentials energy E, Helmholtz free energy F 
and Gibbs free energy G, which are functions of combinations of entropy 
S, volume V, particle number N, chemical potential µ, pressure p and 

117 
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temperature T. The energy and its differential satisfy 

E = E(S,V,N) 
dE = TdS — pdV + µdN. 

The Helmholtz free energy and its differential satisfy 

F = F(T,V,N) = E — T S 
dF = — SdT — pdV + µdN. 

The Gibbs free energy and its differential satisfy 

G = G(T,p,N) = F + pV = µN 
dG = —SdT + V dp + µdN. 

(4.1) 
(4.2) 

(4.3) 

(4.4) 

(4.5) 
(4.6) 

These relations just follow from the First Law of Thermodynamics and 
ordinary calculus. From them we can read off thermodynamic identities, 
such as 

S = — ac = - 
p,N 

OF 
OT V,N 

(4.7) 
OT 

4.1.2 Phase diagram 
If we compute G subject to the constraint that the system is in a par-

ticular phase, then the realised phase is the one with the lowest G. Thus, 
the coexistence line between two phases, I and II, corresponds to the locus 
on the phase diagram where GI = Gm i.e. pi = All. From our perspec-
tive, this is somewhat simplistic, since we have already remarked that 
the partition function describes the entire phase diagram. Nevertheless, 
we proceed with an important consequence: the Clausius-Clapeyron 
relation. 

Consider the coexistence line between liquid and solid in the p — T 
plane: 

Gi(T,p, N) = Gs(T,p,N). 	(4.8) 

Now move along the line: T —+ T + OT, p —* p + bp. This implies that 

Gi(T + oT, p+ Op,N) = Gs(T + oT, p + bp,N). 

Expand to first order, and use the thermodynamic identities 

OG 	OG = —a — = V 
OT 	Op 

(4.9) 

(4.10) 



4.2 	Two-phase coexistence 	 119 

to find the desired relation: 

dp 
PdT 

St  — Ss  

transition 
(4.11) 

Typically Si > S, and V1 > V, for fixed particle number, so that OplOT > 
0. Exceptions include water, where V/  < V, (i.e. ice floats!) and 311e, for 
which V1 > vs  but Si < S, below about 0.5 K, due principally to the spin 
disorder, present in the solid phase, but not in the liquid phase. 

The fact that Si 0 S, implies that latent heat is released at this 
first order transition. Moving along a coexistence line, we may encounter 
a critical point, where (in the example of the liquid-gas transition) Si 
Sg  and Vg  VI; hence the latent heat becomes vanishingly small. 

4.1.3 Landau's Symmetry Principle 

In general, two phases of matter with different symmetry must be 
separated by a line of transitions. This reflects the fact that one cannot 
continuously change symmetry; that is, a symmetry is either present or 
absent. Thus a liquid and a solid are believed to be always separated by a 
line of transitions. On the other hand, the liquid- gas transition can end 
at the critical point, because there is no symmetry difference between a 
liquid and a gas. Note also that the symmetry principle does not tell you 
how the transition occurs between the two phases. The line between liquid 
and solid could be either first order or second order, or both (i.e. one or 
the other depending on the pressure). In rubber, the transition to the 
solid state at fixed temperature, as the number of cross-links increases, is 
thought to be a continuous transition. 

Although a symmetry is either present or absent, it can emerge either 
continuously or discontinuously as the coupling constants are changed. 

4.2 TWO-PHASE COEXISTENCE 

There are several ways of understanding the phase diagram shown in 
figure (4.1). 

4.2.1 Fluid at Constant Pressure 

Consider a liquid maintained at constant pressure. Apply heat. At 
first, the liquid expands, and then begins to boil. As more matter be-
comes gaseous, the temperature remains constant in addition to the pres-
sure. Correspondingly, the volume increases. Eventually, all the liquid has 
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P 

Pc  
liquid 

gas 

(a) 

Tc  T 

Figure 4.1 (a) Coexistence curve in the p—T plane. (b) Isotherms above and below 
the critical temperature in the p — V plane. 

become gas, and subsequent heating causes the gas to expand. This situ-
ation is shown in figure (4.1a). To the left of the coexistence line, there is 
a unique phase — liquid — and the system moves horizontally at constant 
pressure until meeting the coexistence line. When it meets the coexistence 
line, gas begins to appear in the system. During the entire time that liquid 
is being converted into gas, the system remains at the coexistence line, 
at the point corresponding to the initial pressure. This point represents 
the system at all stages of the coexistence, as the volume fraction of gas 
varies from zero to unity. This region is shown in figure (4.1b). Once all 
the fluid has become gas, the system begins to move again horizontally 
off the coexistence line. 

4.2.2 Fluid at Constant Temperature 

Another way to think of the coexistence region is to consider how the 
system behaves as it is moved along an isotherm. Start on the right in 
figure (4.1b), and consider the gas as it is compressed. Initially, OpIOV < 
0, which is equivalent to the fact that the compressibility 

1 ay 

T 	v op  >0. 
T 

(4.12) 

i.e. the system is mechanically stable and exerts a restoring force when it 
is compressed. 

As we move to the left, increasing p, decreasing V and hence increasing 
p = N/V, we eventually reach the equilibrium vapor pressure of the gas 
and the associated equilibrium volume V9(T). Under further compres-
sion, the gas condenses, forming droplets of liquid, at constant pressure. 



analytical continuation 
of p(V) 

liquid!  
Two Phase I  

Region  
VI  Vg  
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Figure 4.2 Maxwell's equal area construction. 

Eventually, the system is all liquified, and the pressure begins to rise again 
as the liquid is compressed. 

4.2.3 Maxwell's Equal Area Rule 
As we have seen, the isotherms in the p—V plane exhibit non-analytic 

behaviour at the boundaries of the two-phase region. However, model 
equations of state, such as that due to Van der Waals, are analytic all 
through the two-phase region. This artifact of these equations reflects the 
fact that the approximation leading to the model equation of state has 
not ensured that the equilibrium state of the system globally minimises 
the Gibbs free energy. As a result, the (e.g.) liquid phase is artificially 
continued into a region of the phase diagram where it is not stable, but 
only metastable or even unstable. 

We can take into account the global minimisation, by using the equiv-
alent statement that at coexistence, the chemical potentials of the liquid 
and gas phases are equal: pi = 	In addition, we require not only ther- 
mal equilibrium, but also mechanical equilibrium: this implies that at 
coexistence, the pressure in the gas phase equals that in the liquid phase. 
Hence, the isotherm in the two-phase region of the p — V plane must be 
horizontal. 

We start from eqn. (4.5): differentiating and subtracting eqn. (4.6), 
we obtain 

(4.13) 

Along an isotherm, dT = 0. Then 

	

liq 	fig V 
ii— 	=J dp = 	—dp = O. 

	

gas 	gas 
(4.14) 

S V do = --N dT —N dp. 
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Geometrically, this corresponds to the statement that the horizontal iso-
therm in the two-phase region must be drawn so that areas bounded by 
the equation of state sum to zero, as shown in figure (4.2). 

4.3 VICINITY OF THE CRITICAL POINT 

The width, in V, of the two-phase region depends on T of course. For 
a given number of fluid atoms (i.e. one mole), and a fixed temperature, 
the width is the difference between the equilibrium volumes of the liquid 
and gas. This width vanishes as T -+ l'j. Well above the transition tem-
perature, the p - V isotherms are well-approximated by the ideal gas law 
plus small corrections. As T 7?, the isotherms become flatter, exhibit-
ing a horizontal tangent at the critical point pc, V, Tc. Consequently, the 
compressibility KT  diverges as the critical point is approached. We will 
see below that the compressibility is analogous to the isothermal suscep-
tibility in magnetic systems. 

Let us characterise the phenomena associated with the critical point, 
as we did for magnetic systems. The isothermal compressibility n7, di- 
verges as T 	with an exponent y (-I-) or 7'(-): 

1 OV 
= 	 IT - T. 	 (4.15) T 	v A 

vP T 

As we go through the critical point, the coexistence curve has equilibrium 
volumes VAT), Vg(T), which are not equal. In terms of the volume per 
particle in the liquid (gas) phase, vi(g)= Vi(g)/N, 

v9 - 	ITc  - Tr. 	 (4.16) 

The width of the coexistence curve is analogous to the spontaneous mag-
netisation in a magnetic system. The specific heat at constant volume Cv 
diverges as T -+ 	with an exponent a (-I-) or a'(-): 

Cv N IT - Tcr. 	 (4.17) 

On the critical isotherm, T = Tc  and 

IP - pci N IV - V16 . 	 (4.18) 
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4.4 VAN DER WAALS EQUATION 

In terms of the volume per particle v = VIN in a gas or a liquid, the 
equation of state of an ideal gas is 

pv = kBT. 	(4.19) 

Van der Waals proposed an equation of state to take into account the 
hard core potential of the atoms (i.e. the excluded volume due to the 
non-zero radius of the atoms) and the attractive interactions between the 
atoms. The former reduces the volume by a certain amount denoted by 
b. The latter reduces the energy per particle on average by an amount 
proportional to the density: since p= -OF/OV, this in turn reduces the 
pressure by an amount proportional to V-2. Hence we arrive at the Van 
der Waals equation 

_ kBT a 
P 	v - b 712.  

( 4 . 2 0 ) 

Here, b volume of hardcore of the fluid particles and a is a measure 
of the attraction between particles (a > 0). The motivation for the 
equation given above shows that it has the status of mean field theory. The 
parameters a and b can be determined by fitting the proposed equation 
of state to experimental data at high temperatures well above the critical 
paint. 

441.  Determination of the Critical Point 

As T Tc, the equation p = p(v) has an inflexion point: 

op  ozp 0  

Ov 0v2  
(4.21) 

at T = Tc. We can readily find pc, vc, 71 by noting that p(v) is a cubic. 
Thus the equation p(v) =constant should have 3 solutions. For T > TT, 
there are 1 real and 2 imaginary solutions, whereas for T <Tc  there are 3 
real solutions. Hence, at the critical point, the three solutions all merge. 
Write Van der Waals equation as 

) 2 	ab = u. v3  - kBT — v -v - — 
p p p 

(4.22) 

and note that at pc, vc,Tc  all three roots should be equal, i.e. eqn. (4.22) 
must be of the form 

(v - vc)3  = 0. 	 (4.23) 
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Table 4.1 CRITICAL POINT OF ARGON 

Parameter 	Experiment 	Prediction of eqn. (4.25) 

	

TcPC 	-122 	 -119.7 

	

pc/atm 	48 	 48 

	

tqcm3/mol 	75 	 97 

Hence, equating coefficients of powers of v in eqns. (4.22) and (4.23), we 
read off 

and thus find 

Svc 	+ _kBTc, 3v  a 	3 ab 
v = — 

Pc 	Pc' Pc' 
(4.24) 

vc  = 36; pc  = a/27b2; kBT, = 8a/27b2. 	(4.25) 

This is a remarkable result: the high temperature fit of a and b to exper-
iment predicts Tc, vc and pc. How well does it work? For argon, a = 1.354 
12  atm/mol and b = 0.0322 l/mol = 53.4 A./molecule. The results are 
summarised in table (4.1). The agreement is quite good, considering the 
modest theoretical effort. 

The theory also predicts that 

pcvc 3 — 	= 0.375, 	 (4.26) kBT, 8 

a universal number, independent of a or b, and thus the same for all fluids. 
Experimentally this ratio is 0.292 for argon, 0.23 for water and 0.31 for 
4He. The agreement is reasonable — the number is clearly not varying by 
orders of magnitude, or even by factors of 2. 

4.4.2 Law of Corresponding States 
The Van der Waais equation may be expressed in dimensionless form 

by resealing. Define the reduced pressure, volume and temperature by 

7 a: P/Pc;  v = V/Vc; 
	

T ITc• 	(4.27) 

Then the Van der WaaIs equation becomes, using eqn. (4.25), 

(r + 14) (31, — 1) = 8r. 	 (4.28) 



Thus 

aN 2  
V (4.31) F(V,T)— Fideat = —NkBT log ( 

 V —
vNb) 
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This is also remarkable! When scaled by pc, vc,Tc  all fluids are predicted 
to have the same equation of state, with no other parameters involved. 
This is the law of corresponding states. Since the equation of state is, 
after rescaling, predicted to be the same for all fluids, all thermodynamic 
properties which follow from the equation of state should also be universal. 

Note that this is a form of universality, but is quite different from 
the universality at the critical point. The law of corresponding states 
is predicted to apply everywhere on the phase diagram. In fact, it can 
be shown that the law of corresponding states is a simple consequence 
of dimensional analysis, and is of greater generality than the derivation 
from the Van der Waals equation might suggest; the reader is invited to 
explore this in the exercises at the end of this chapter. 

Experimentally, the law of corresponding states is well-satisfied, even 
by fluids which do not obey the Van der Waals equation. For example, 
the ratio of pv/kBT plotted against reduced pressure at fixed reduced 
temperature should be independent of the particular fluid. The data from 
a wide variety of fluids do indeed fall on the same curve to a high degree 
of accuracy? 

4.4.3 Critical Behaviour 
In this section, we will calculate the critical exponents of the Van der 

Waals fluid. As a first step, let us calculate the free energy corresponding 
to the Van der Waals equation of state; this will enable us to compute 
thermodynamic quantities by differentiation. 

We start from the relation p = —0F1817, where the derivative is at 
constant T. Integrating eqn. (4.20) with respect to V gives 

2  —F(V,T) = NkBT log(V — Nb) aN  f(T), 	(4.29) 

where f(T), the constant of integration, is some function of T. When 
a = b = 0, we should just recover the result for ideal gas i.e. 

—Fideca(V,T) = NkBT log(V) f (T). 	(4.30) 

1  The experimental data are reproduced by H.E. Stanley, Introduction to Phase 
Transitions and Critical Phenomena (Oxford University Press, New York, 1971), p. 73. 
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Now we compute the thermodynamics near the critical point. We begin 
with the heat capacity at constant volume Cy. Using S = -8F/OT and 
Cy = TOSMT we obtain 

CVdW = Ceal  = 3NkB. 
2 

(4.32) 

Thus Cy does not diverge at the critical point: a = 0. On the other hand, 
the heat capacity at constant pressure Cp  is given by the thermodynamic 
identity2  

Cp  - Cv 	(M 2  OV 
OT V -P T 

• 
(4.33) 

Performing the differentiation gives 

NkB  Cp - Cy = 1-  (2aN)(V - Nb)2 /V3kBT (4.34) 

At the critical point, or near to it, put V = Vc  and let T -+ Tc, to give 

Cp  - Ci, 	T  
NkB 	T - Tc •  

Thus Cp  N  (T - Tc)-1. Equation (4.33) shows that Cp  > Cy in equi-
librium, because of the fact that the compressibility KT  = -11-18V/Op 
is non-negative, and that in general Cp  diverges in the same way as KT. 
Hence y = 1. The divergence of KT  has a direct physical interpretation: KT  

is an example of a response function, describing how the volume of the 
system changes under applied pressure. The divergence of this quantity 
means that the system becomes extraordinarily sensitive to an applied 
pressure near the critical point. This is not unreasonable, because for 
T slightly less than Tc, the system is thermodynamically unstable to-
wards phase separation. The critical point therefore represents a state of 
marginal stability. 

The exponent f3 is given from the shape of the coexistence curve as 
T 	T. We can approximate this using the law of corresponding states. 
Let 

2  See (e.g.) L.D. Landau and E.M. Lifshitz, Statistical Physics Part 1 (Third Edition) 
(Pergamon, New York, 1980), p. 53. 

(4.35) 

T Tc 	, V 
V
- Vc  

v-i= 	 (4.36) 
Tc   
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Then, in the vicinity of pc, Tc, Vc, i.e. r = r = 1,  = 1, we expand the 
equation of state (4.28): 

8(1-I- t) 
r =

3(1 -I- — 1 

=1 	4t — 6t0 — 

3  
(1 + 0)2  

03  +0(42,04) 
(4.37) 

The terms omitted from this expression are justified post hoc: in fact, we 
will see that 0, 0/2  so eqn. (4.37) is indeed the lowest non-trivial order 
approximation to the equation of state near the critical point. To find the 
coexistence volumes vl(p), v9(p), or equivalently the corresponding values 
of 0, namely 0/ and (h, we use the Maxwell construction v dp = 0. For 
fixed t < 0, the differential 

dp = pc  [-6t d¢ —  02 
d4)]2 

giving 
.495g

1  
0 (-61 — 9 —02) d0 = 0. 	 (4.38) 

2 
This must be satisfied for all t in the range of validity of approximation 
(4.37), so we conclude that (I>g  = "41. To find how Og  or 0/  depends on t, 
write eqn. (4.37) in terms of (kg and 0/: 

3 
9  

r = 1 + 4t — 6t09 2 — —0- 
g 
 eqn. 

r = 1 + 41 + 610
9 

3  
+ —0

3 	
eqn., 

2 g 4)1 

(4.39) 

(4.40) 

where we have used (kg  = "41  in eqn. (4.40). Subtracting and solving for 
(e.g.) 09  gives 

= 2."7:7 (TcT_cT)112 
• 	 (4.41) 

i.e., the critical exponent # = 1/2. 
We can calculate the shape of the critical isotherm, by setting t = 0 

in eqn. (4.37); this yields the critical exponent 5: 

_ 1 = 	= 3 P 
Pc 	2 

Pc 	(V 
17, 

Vc) 3  V Vcy 

Hence, 6 = 3. 
The values of the thermodynamic critical exponents a, /3, 7 and 6 are 

the same as those obtained for the mean field theory of a ferromagnet. 
See table (3.1) for the comparison to experiment. 

(4.42) 
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4.5 SPATIAL CORRELATIONS 

Now we will discuss the spatial correlations in a fluid near the critical 
point, again within the framework of mean field theory. In the preceding 
chapter, we were able to relate the two-point correlation function with 
the isothermal susceptibility through the static susceptibility sum rule. 
We will now perform the corresponding analysis for a fluid. In a fluid, 
the two-point correlation function describes the statistical fluctuations in 
density. Thus, we will begin by showing how fluctuations in the number 
of particles in a fixed volume V are related to the compressibility. 

4.5.1 Number Fluctuations and Compressibility 
We work in the grand canonical ensemble. One way to visualise this 

is as follows: consider a volume of space V embedded in a much larger 
system SI Then particles of fluid in Si will wander in and out of the volume 
V, causing the number N of particles in the volume V to fluctuate. The 
mean number of particles in the volume V is 

(N) = kBT 0 log E  
(4.43) 

oiL T,V 
where 

Tr e  —0(H AN). 

Similarly 
Tr N2e-P(11-1111) 	1 1 

T,V 

(4.44) 

(4.45) 

(4.46) 

(4.47) 

(1')  = 	Tr e-P(11-1211)  
1 02 10g _,_ 

,82  E 
07,2 

• 

1 0 = 
T,V 	

P µ(N) 

AN is given by 
kBT 

—132 	op2 
Therefore 

020172  Et" (N2) 	(N)2 	
32
1 

Thus, the fluctuation in particle number 

AN2 E (N2) — (N)2 _ 
apioNIT,V 

As it stands this is not very useful, but we can use thermodynamic trickery 
to express this in terms of measurable quantities, using Jacobians3 

OP  
ON 

49(A,V) 	0(N,p) 	0(2,V) 1 0(N,V) 
v,T 	0(N,V) -  8(N, p) 0(N, V) 0(N,p)I 8(N, p) 

au/ox 8u/ay 3  The Jacobian 8(n, v)/(3(x,y) is defined to be det avlaz 81441' 
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= 
Op OV _ Oli 

NT 	OP 

OV 

pT 

( OV )-1  
. 	(4.48) 

NT/ ON  

( 

pT °P NT °N  \ °P 

This can be simplified, because the fact that G(T, p, N) = µ(T,p)N means 
that OWONlp  = 0. Hence, the first term in eqn. (4.48) vanishes. The 
second term is simplified, because eqn. (4.6) implies the Maxwell relation 

0µ 
Op 

Thus, the second term just involves 

N 

OV 
P 

— 

the particle density 

) 1  N 

(4.49) 

(4.50) ON°P  

= 
ON 

= 
(Opp 

P(T,P)= OV 

Finally, using the definition of the compressibility KT  given in eqn. (4.12), 
we obtain 

(N2 ) — (N)2  = kBT p2V KT. 	 (4.51) 

4.5.2 Number Fluctuations and Correlations 
Let us define the dimensionless two-point correlation function 

1 
G(r — r') = 

P
7  RP(r)p(r)) — p2] (4.52) 

We expect two widely separated points to be uncorrelated, so 

(P(r)P(r')) — (P(r)) (p(r')) = p2 	(4.53) 

as Ir — r'i —> oo. Hence G(r — r') —* 0 as Ir — el --+ oo. Note that we can 
write 

G(r — r') = 
P7 

 ((p(r) — p) (p(r') — p)) , 	(4.54) 

showing that G represents fluctuations about the mean density, (p(r)) = 
p. The total number of particles in the volume V is given by 

N = 
J 

p(r)ddr. 	 (4.55) 

Hence, 

J 
dd r dde G(r — rI) =-)-5  i ddr dde [(p(r)p(V)) — p2 ] 

=12  [(N 2 ) — (N)2} . 
P 

(4.56) 
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But translational invariance implies that 

ddr ddr' G(r - r') = V f ddr G(r). 	(4.57) 

Finally, collecting together eqns. (4.51), (4.56) and (4.57), we obtain the 
desired relation between the correlation function and the isothermal com-
pressibility: 

I ddr G(r) = kBT 	(4.58) 

As mentioned previously, for a fluid in d dimensions, well away from the 
critical regime, G is of the form 

G(r) 	i ri(d-1)/2e(d-3)/2 ' 

where e(T) is the correlation length. 

e-iri/t 
(4.59) 

4.5.3 Critical Opalescence 

The relation between the two-point correlation function and the iso-
thermal compressibility leads to exactly the same consequences at the 
critical point that we saw in the previous chapter for the isothermal sus-
ceptibility: a diverging correlation length is implied by the divergence of 
the compressibility, with exponent v = 1/2. 

In a fluid, the two-point correlation function measures the density 
fluctuations, which are able to scatter light. Thus, if light of wavelength 
A is incident on the fluid, the resultant intensity I of the light scattered 
through an angle 0 is proportional to the structure factor 

S(k) = p ddr Cik•r G(r), 	 (4.60) 

kBTicT p 
I cc S(k) - 

1 + k2 	
(4A1) 

2(T) 

Measurements of the intensity I as a function of k are an accurate way 
to determine e(T). At the critical point, 

5(k) 	, 	(4.62) 

enabling q also to be determined by light scattering. 

with lki = 4r sin(0/2)/A. Using eqn. (4.59), and performing the Fourier 
transform gives 
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The divergence of ic7, is reflected in the divergence of 

J ddr G(r) = ddr e—il"G(r)1 	cc 5(0). 	(4.63) 
k=0 

The divergence of 5(k) as k —> 0 for T T, is easily observable, because 
the scattering of light increases dramatically near the critical point. When 
there are correlated density fluctuations with (T) N Aught , the light is 
strongly scattered, multiple scattering becomes important, and the light 
cannot be transmitted through the medium. It becomes milky or opaque. 
This phenomenon is known as critical opalescence4 

4.6 MEASUREMENT OF CRITICAL EXPONENTS 

To conclude this chapter, let us make some general comments about 
the definition and measurement of critical exponents. 

4.6.1 Definition of Critical Exponents 

Perhaps the most important point to emphasise is that critical expo-
nents are only defined as limiting power laws as T —> Tc. Thus 

f(t) ,  to 	(4.64) 

means that 

A = lim 
log At)  

• 
(4.65) 

t--03 log t  
Sometimes, a critical exponent will be quoted as having the value zero. 
This can mean either that the corresponding variable has a discontinuity 
at Tc, or may show a logarithmic divergence. The latter corresponds 
to the exponent vanishing through the identity 

log t = lim 
[1 — e'l°01 lim  11 — 

oe—+0 	a J «—.oI.  a 	
(4.66) 

In general, a critical exponent describes only the leading behavior. 
There may well be, and usually are, subdominant corrections, known as 
corrections to scaling. For example, the heat capacity (at constant 
volume) has the following form in general: 

Cv(t) = Altra (1 + BM°  + ...) , 	 (4.67) 

th

4  A detailed discussion is given by D. Beysens in Phase Transitions, Proceedings of 
e Cargese Summer School 1980 (Plenum, New York, 1982), p.25. 
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where 9 > 0 and B is a constant of order unity. The correction to the 
leading scaling behaviour vanishes as (ti —+ 0, but may still make a signif-
icant contribution to Cy for small but non-zero values of M. In particular, 
when 6 < 1, the correction to scaling is actually singular, and such a term 
is often referred to as a confluent singularity. Corrections to scaling 
cannot be neglected in practice if reliable values for the actual critical ex-
ponents are required. Confluent singularities turn out to be particularly 
important near the superfluid transition in 4Heb The origin of corrections 
to scaling is discussed from the RG point of view in section 9.10. 

In addition to the non-analytic critical behavior, there is usually a 
smoothly varying backround piece which is not singular at T. For exam-
ple, in the Van der Wails gas, the free energy has a part which is that of 
an ideal gas, and a part coming from the interaction. The former is always 
smooth, whilst it is the latter which can give rise to critical behavior. For 
example, the formula for Cp: 

Cp  = Cv NkBT 	_ Te. 	(4.68) 

In these notes, we will be mainly concerned with critical exponents, 
but there are also constants of proportionality that must be considered 
too. For example, 

ta  
Cy(t) = 	 t < O. 	 (4.69)  

A and A' are called critical amplitudes, whereas a and a' are critical 
exponents. The prime denotes "below Tc”. The primed exponents are 
always equal to the un-primed exponents, and are universal, as we have 
discussed. The amplitudes are not universal, however. Nevertheless, the 
amplitude ratio A/A' is universal. 

4.6.2 Determination of Critical Exponents 
It is actually notoriously difficult to measure critical exponents. Let 

us see why. Suppose we want to measure the specific heat exponent a. 
In a theorist's ideal dream world, the experimentalist measures Cy(T), 
makes a log-log plot versus t = (T — TT)/TT, and reads off a from the 
slope of the line. What happens in practice? 

In practice Cp is measured as DE/OT when putting AE of energy 
into the system and measuring the temperature change AT. This is a good 

5 See the discussion by G. Ahlers in Phase Transitions, Proceedings of the Cargese 
Summer School 1980 (Plenum, New York, 1982), p.1. 
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log t 
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Figure 4.3 Schematic plot of real experimental data on the heat capacity near a con-
tinuous phase transition. Near Tc, the data are rounded due to instrumental resolution, 

impurity effects or the finite size of the system. Away from Tc, corrections to scaling 

and the background become important. 

approximation to the heat capacity as long as AT << T. However, to look 
for critical behaviour, we require much finer resolution of temperature 
differences AT < IT — Tel. The limiting sensitivity of the thermometer 
ST means that AT > ST, and hence that Itl >> 5T/Tc. This is a nuisance, 
because from the discussion above, we really wish to measure the limit 
t 	0. Thus, very high resolution thermometry is required. 

Now suppose that we have managed to take some plausible data. The 
quantity of interest (Cv) in this example has an analytic background 
superimposed upon the singular behaviour we are trying to determine. 
To subtract off the background requires some modelling of it: in other 
words, curve fitting. To really eliminate background effects requires one 
to make t small enough that the diverging contribution overwhelms the 
background. 

Even if we have been lucky enough to obtain good data on the singular 
contribution, when we plot it, we are sure to find that it does not scale! 
Close to 711,, instrumental resolution, impurity effects or the finite size of 
the system cause rounding of the divergence. Away from T,, corrections 
to scaling and the background may be significant. In practice, one is lucky 
to obtain two decades of convincing power law behaviour. 

Lastly, another difficulty has been swept under the rug. We do not 
know a priori the value of T. It has to be treated as an adjustable pa-
rameter, along with the background and corrections to scaling. 

All of the above assumes that the data can actually be taken. This is 
not a trivial remark — as T Tc, it takes longer and longer to equilibrate 
the system. This is a phenomenon known as critical slowing down. As 
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the correlation length diverges, the regions of the system, which represent 
fluctuations about the equilibrium state, get larger and larger; correspond-
ingly, they take longer and longer to relax by whatever is the equilibration 
mechanism (often diffusion). The manner in which the relaxation time 
rk  of modes with wavenumber k diverges as T Tc  is the topic of dy-
namic critical phenomena. In general, it is found that the relaxation 
time of the mode with zero wavenumber To  diverges as 

To ", e(T)z, 	 (4.70) 

defining the dynamic critical exponent z. Depending upon the dynamic 
universality class, z can range from about 2 to about 4 or 5. We will 
discuss this topic in detail in chapter 8. 

EXERCISES 

Exercise 4-1 

In this question, you will investigate the microscopic origin of the law of 
corresponding states. Although this is a scaling law, it is not a result of 
scaling near the critical point. 
(a) Consider a gas of particles in a volume V interacting via a pair poten-

tial U(r). Sketch a typical form of U(r). Suppose that for a particular 
class of substances, U(r) has the form U(r) = cu(r/cr); an example is 
the class of inert gases, well described by the Lennard-Jones potential. 
The meaning of this is that the energy scale is set by c and the length 
scale by a. For example, different gases might have different hard core 
radii a and binding energies c. Working in the canonical ensemble, 
show that all substances in this class have the same equation of state 
when expressed in suitably scaled variables. i.e. p* = 11(v*, T*), where 
starred quantities are scaled pressure, volume per particle and tem-
perature. 

(b) Show that if there is a critical point for this class of fluids, then peve/T, 
is a constant independent of the particular fluid. 



CHAPTER 5 

Landau Theory 

We have seen, by example, how two apparently different physical systems 
can be described by mean field theory. In the Van der Waals gas, each 
particle interacts with the average density due to all the other gas parti-
cles. In the Weiss model of ferromagnetism, each spin interacts with the 
average magnetic field due to the magnetisation of the other spins. Such 
theories are called mean field theories, because each degree of freedom is 
assumed to couple to the average of the other degrees of freedom. Ex-
plicitly, in a magnetic system, the total field experienced by the spin at 
site i, due to the external field H and the neighbouring spins in a given 
configuration, may be written as 

Htotal(i) = H E J,, (Si) + 	- (Si)). 
	(5.1) 

i(#i) 	jOi 

In the Weiss model, the fluctuation term 

E 	- (s,)) 	(5.2) 
i(00 

is ignored. In fact these fluctuations contain the most important physics 
near a critical point, as we will shortly see. This chapter begins by ad-
dressing the question of why the critical exponents are the same for both 

135 
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the Van der Waals fluid and the Weiss ferromagnet. In answering this 
question, we will convince ourselves about the universality and the in-
evitability of these values of the critical exponents; nevertheless, in the 
following chapter we shall prove that mean field theory cannot possibly 
be correct near the critical point. 

5.1 ORDER PARAMETERS 

In chapters 3 and 4, we saw that mean field theory (MFT) gave the so-
called classical values for the critical exponents by expanding the equation 
of state near the critical point. The expansion parameter was the sponta-
neous magnetisation in the case of the ferromagnet and the half-width of 
the coexistence curve in the case of the fluid. Both quantities exhibited 
the same temperature dependence, and are examples of the concept of an 
order parameter. 

In the examples considered so far, the order parameter was a scalar. 
However, in general this is not necessary. The order parameter can be a 
vector, a tensor, a pseudo-scalar, or a group element of a symmetry group 
such as SU(N) etc. The order parameter for a given system is not unique; 
any thermodynamic variable that is zero in the un-ordered phase and 
non-zero in an adjacent (on the phase diagram), usually ordered phase, is 
a possible choice for an order parameter. Trivially, we could perfectly well 
choose M3  as the order parameter in a ferromagnet. Let us consider some 
examples of order parameters, with differing numbers of components. 

5.1.1 Heisenberg Model 
The Hamiltonian is 

Hrl  = —J 	si • sj  — H • E si, 	(5.3) 
(ii) 

where each site i on a lattice has a vector spin of constant magnitude 
(chosen to be 1) but variable direction: 'Sir = 1. When the system orders 
below 71 in more than two dimensions, the magnetisation is non-zero and 
points in some arbitary direction n. Thus, an order parameter is 

1 	 0 	T > Tc; 
M  = N(St) 	(Si) = 1 Mn T < Tc. 

Since M is a vector in three dimensions, the order parameter has 3 compo-
nents. The Hamiltonian in zero external field has 0(3) symmetry, which 
means that 

110{Si} = //0{RSi}, (for H = 0), 	(5.5) 

(5.4) 
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where R is an arbitary rotation matrix in three dimensions, acting on 
all the {Si}. The Hamiltonian in zero field is invariant under this arbitrary 
global rotation in spin space because it only depends on the scalar product 
of Si and S„ i.e. the angle between them. Note that R rotates all of the 
spins by the same amount; it does not rotate the lattice on which the 
spins live. In zero field, the 0(3) symmetry of the Heisenberg model is 
spontaneously broken for T < Tc. 

When H 0, the Hamiltonian is still invariant about rotations of the 
spins in the plane perpendicular to H. So, now the system is invariant 
under 0(2) rotations. 

5.1.2 XY Model 

The Hamiltonian of the so-called XY model is given by eqn. (5.3), 
but the spins are unit vectors confined to rotate in a plane. The lattice 
on which the spins reside is still d dimensional, however, and the order 
parameter is once again the magnetisation M = (Mx , My). The order pa-
rameter has only 2 components, even though the dimensionality of the sys-
tem may be d = 1, 2,3,4 .... Spontaneous symmetry breaking can occur 
at non-zero temperature for d > 2. In two dimensions, a phase transition 
can occur, although it is not described by any local order parameter such 
as the magnetisation. This transition, the so-called Kosterlitz-Thouless 
transition, will be described separately in chapter 11. 

5.1.3 3He 

The order parameter for the superfluid transition in 3He is an anoma-
lous pairing amplitude, 'I', which is a product of quantum mechanical 
field operators, whose expectation value at T # 0 is taken. It turns out 
that 'P describes a state in which 3He atoms form Cooper pairs in a 
p-wave state. The order parameter IP has 18 different components and 
is said to form a representation of the group SO(3) x SO(3) x 0(2). 
Crudely speaking, this means that with a p-wave state, the orbital angu-
lar momentum has three values, and therefore the spin has three possible 
values also. Finally, the spatial part of the. Cooper pair wave function is 
a complex number, which for a given amplitude, may have an arbitrary 
phase. 
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5.2 COMMON FEATURES OF MEAN FIELD THEORIES 

Now we will try to understand the reason for the universality that 
we have seen in mean field theory: i.e. the prediction that both a fluid 
and a ferromagnet near their critical points will exhibit the same critical 
exponents. We begin with the Van der Waals equation of state 

8r 	3 
r = 

	

	— 	 (5.6) 
3v — 1 v29  
P/Pc, 	 (5.7) 

V E V/Vc = (N/10-1/(N/17);1 = 	 (5.8) 

T 	T ITc; t =
T

Tc
Tc 

— T 1. 
	 (5.9) 

For later convenience, we also define 77 E. (1/V) — 1 = (p/ pc) — 1, which 
will serve as our order parameter. Then 

1 

	

E- v — 1 = 	—1   (1+n) 

The equation of state (4.37) becomes 

3 
- 7=11-4t1 	+ 	— -6t7/ 

21/ + 0(74,772t), 

which can be derived from the Gibbs free energy 

G(p,T,n) = Go(p, T) 	[— (7 	
, 

—1— 4t)n+ 	+ 8'~4] Pc 

(5.10) 

(5.11) 

(5.12) 

where we regard ri as an independent parameter, whose value is to be 
determined by minimising G(p,T,n). Note that n is not now regarded 
as a function of (p,T). The precise way in which n is determined will 
be explained shortly. The term (Nip!) is unimportant for present pur-
poses. It is present so that once 7/ has its equilibrium value, qp,T,Ii) is 
dimensionally correct. 

Now we perform the analogous calculation for the equation of state 
of the Weiss ferromagnet. Start with 

kBT = M(1— r) M3(r — r2 r3/3 + • • .) 
	

(5.13) 
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where, in contrast to eqn. (5.9), r-1  E TITc. In terms of 

T - T 1 t- 	= - -1 71, 	r 

and the order parameter n = M, the equation of state becomes 

H 
kBT 

- 	713  + 0(t773), 

(5.14) 

(5.15) 

which can be derived from the Gibbs free energy 

tiH 	tn2  1 4  
r(11, T, H) = ro(T,H) - — kBT 	2 + -477 	(5.16) 

by minimizing with respect to 77. The similarity between eqns. (5.12) and 
(5.16) is why the critical exponents of the two models, obtained by dif-
ferentiating the thermodynamic potentials! are the same. In the Van der 
Waals case, the role of the external magnetic field is played by r -1- 4t. 

5.3 PHENOMENOLOGICAL LANDAU THEORY 

In retrospect, it was inevitable that we obtained the mean field expo-
nents that we did. The Taylor expansions of the equation of state in terms 
of the order parameter n and reduced temperature t involved the most 
general lowest order term that can be written down, while the absence 
of terms quadratic in 77 was guaranteed by the fact that the thermody-
namic potential was even in 71 (for zero external field). These observations 
motivated Landau to suggest that we can apply similar considerations, 
at least in spirit if not in detail, to all phase transitions. The resulting 
theory, based upon rather general considerations of symmetry and ana-
lyticity, will be referred to sometimes as phenomenological Landau theory. 
Landau theory may also be motivated by a systematic calculation from 
the microscopic Hamiltonian, as discussed in exercise 3-3, and below; 
however, this has limited use, as we will see. 

1  The distinction between Gibbs and Helmholtz free energies in the present context 
is a matter of what are the constraints on the system, e.g. whether the electromagnetic 
field is included as part of the system. These distinctions will not turn out to be 
important for present purposes: the quantity whose expansion is given by eqns. (5.12) 
and (5.16) is actually neither the Gibbs nor the Helmholtz free energy. 
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5.3.1 Assumptions 

Landau theory postulates that we can write down a function L 
known as the Landau free energy, or sometimes the Landau func-
tional, which depends on the coupling constants {Ki} and the order 
parameter n. L has the property that the state of the system is specified 
by the absolute minimum (i.e. global) of L with respect to ,. L has di-
mensions of energy, and is related to, but, as we will see, is not identical 
with the Gibbs free energy of the system. We assume that thermody-
namic functions of state may be computed by differentiating L, as if it 
were indeed the Gibbs free energy. The precise interpretation of L will be 
discussed in section 5.6. To specify L, it is sufficient to use the following 
constraints on L: 
(1) L has to consistent with the symmetries of the system. 
(2) Near Tc, L can be expanded in a power series in n. i.e. L is an analytic 

function of both n, and [K]. In a spatially uniform system of volume 
V, we can express the Landau free energy density .0 as 

L 00 -v = >2 an, an 7/7/  

n=0 

(5.17) 

(3) In an inhomogeneous system with a spatially varying order parameter 
profile 77(r), is a local function: i.e. it depends only on n(r) and a 
finite number of derivatives. We will explain later the precise meaning 
of 77(4 

(4) In the disordered phase of the system, the order parameter i = 0, 
whilst it is small and non-zero in the ordered phase, near to the tran-
sition point. Thus, for T > Tc, n = 0 solves the minimum equation 
for L; for T < Tc , i  0 solves the minimum equation. Thus, for a 
homogeneous system, 

4 

= E an([1f],T)7in  , (5.18) 

where we have expanded G to 004) in the expectation that 77 is small, 
and all the essential physics near Tc  appears at this order, as it did 
for the Van der Waals fluid and the Weiss ferromagnet. Whether or 
not the truncation of the power series for .0 is/valid will turn out to 
depend on both the dimensionality of the system and the codimension 
of the singular point of interest. 
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5.3.2 Construction of .0 
Now we use the assumptions to explicitly construct G. Start with (1): 

OG 
077  = al  -I- 2a277 3a3972  4a47/3  = 0. 	(5.19) 

For T > Tc, = O. Hence al  = O. 
Now consider the symmetry constraint. This is best seen by example: 

for the ferromagnet rl = M, and if we have an Ising system with H = 0, 
then the probability distribution P for 7/ is even in a finite system: P(i) = 
P(-77). Assuming that P N exp(—f3L), we require G(i) = A-0. We shall 
discuss the precise connection between P and L later. The evenness of .0 
in this case implies that, 

a3  = a5  = a7  = • • • = 0. 	 (5.20) 

and thus 
= ao([K],T) + a2([1(],T)712  a4([K],T)774. 	(5.21) 

Note that the requirement that G be analytic in n precludes terms like 
NI in eqn. (5.21). Also, the coefficient a4([1(]) > 0, otherwise the Landau 
function can be minimized by In' oo, whereas we wish to describe how 
the order parameter rises from zero and has a finite value as the coupling 
constants are varied through the transition point. 

Continuing with our example of the Ising ferromagnet in H = 0, we 
now ask for the form of the coefficients an([lq,T). 

ao([K], T) is simply the value of G in the high temperature phase, 
and we expect it to vary smoothly through Tc. It represents the degrees 
of freedom in the system which are not described by the order parameter, 
and so may be thought of as the smooth background, on which the singular 
behaviour is superimposed. It is sometimes said that (G — ao) represents 
the change in the Gibbs free energy due to the presence of the ordered 
state, but this statement is erroneous because L is not the Gibbs free 
energy. We will usually set ao to a constant (zero) in what follows. 

Now consider a4. Expanding in temperature near T0, we obtain 

a4  = 4 (T — Tc)al -F 	 (5.22) 

It will be sufficient to just take a4  to be a positive constant. The temper-
ature dependence of eqn. (5.22) will turn out not to dominate the leading 
behavior of the thermodynamics near Tc. 

Similarly, we expand a2: 

0 	— 	+ 0 ((T — 71)2) . 	(5.23) a2  = a2 
(T  

Tc 
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We can determine the form of this from (4): 

rn=o T > Tc; 
17700 T <71. 

Solving eqn. (5.19) for I/ gives 

\ —a2(T)  n=o or n—. 2a4 
 

(5.24) 

If r1 is to be non-zero when T < Tc, then 

4 = 0 	 (5.25) 

a2 = al (
T — 	

+ 0 	—cTc)2) . 	(5.26) 

The higher order terms in (5.26) do not contribute to the leading behavior 
near Tc. 

Now let us extend the treatment to the case H 0 0. For the Ising 
ferromagnet, we know that n = M and that the appropriate energy is 

E1 	= — HNM. In conclusion, we obtain our final expression 

L =VG = NG (for lattice systems), 

G =ate +21)774  — H. 	(5.27) 

The coefficients a and b are phenomenological parameters, which in princi-
ple could be obtained from the appropriate microscopic theory. In princi-
ple, a term proportional to He is also allowed by symmetry in eqn. (5.27), 
but this is not a leading term near the critical point. 

We have only considered the Ising universality class; in general, how-
ever, the Landau function is constructed by writing down all possible 
scalar terms which are powers and products of the order parameter com-
ponents, consistent with the symmetry requirements of the particular 
system? 

2  For a detailed discussion, see L.D. Landau and E.M. Lifshitz, Statistical Physics 
Part 1 (Third Edition) (Pergamon, New York, 1980), §145. 

and 
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Figure 5.1 The Landau free energy density for various values of T and H. The • 
indicates the value of 97 at which G achieves its global minimum. The right-most column 
of graphs depicts the first order transition, which occurs for T <Tc  as H is varied from 
a negative to a positive value. The central row depicts the continuous transition, which 
occurs for H = 0 as T is varied from above Tc  to below Tc. 

5.4 CONTINUOUS PHASE TRANSITIONS 

Now we will see how Landau theory accounts for the non-analytic 
behaviour near and below Tc. It is very helpful to sketch the form of 
co,H,T), as shown in figure (5.1). 

Here we discuss the continuous transition, which occurs for H = 0, 
as shown in the central row of graphs in figure (5.1). For T > T,, the 
minimum of is at i = 0. For T = 71, the Landau function has zero 
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curvature at 97 = 0, but n = 0 is still the global minimum. For T < Tc, 
two degenerate minima occur at n = ±77.,. The value of lb depends on T: 
ns= 

5.4.1 Critical Exponents in Landau Theory 
First, we treat the case H = 0. The exponent /3 is found from the 

variation of the order parameter n  with t. From eqn. (5.24), we get 
778(T) = (—at/b)1/2, for t < 0, enabling us to read off /3 = 1/2. Other 
thermodynamic exponents can be calculated as follows. For t > 0, = 0. 
For t < 0, 

1 a2t2  
= 2 b • 

The heat capacity is computed from Cy = —T82LC/8T2: 

0 	T > Te; Cy = f a2 	< Tc• 

(5.28) 

(5.29) 

This shows that the heat capacity exhibits a discontinuity and thus a = 0. 
To compute the remaining thermodynamic critical exponents, we need to 
let H # 0. Differentiating G with respect to H gives the magnetic equation 
of state for small 17: 

atn + be = 2H. 	 (5.30) 

On the critical isotherm, t = 0 and H a e, which implies that b = 3. The 
isothermal susceptibility (recall that n  is the magnetisation) is obtained 
by differentiating eqn. (5.30) with respect to H: 

XT(H)m On(H) OH 1  
T  2(at 3b9(H)2)' (5.31) 

where n(H) is a solution of eqn. (5.30). We are interested in the response 
function at zero external field. For t > 0, rl = 0 and XT  = (20)-1. For 
t < 0, n2 = —at lb and XT  = (-4at)-1. Hence 7 = 7' = 1. 

Now we have found all of the mean field thermodynamic exponents; as 
expected, they agree with those of the Weiss and Van der Waals equations. 
What about the critical exponents describing the spatial correlations in 
the system? To calculate these, we have to make an extension of Landau 
theory to deal with inhomogeneous systems. But first, while we are dealing 
with uniform systems, it is appropriate to mention the topic of first order 
phase transitions. 
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5.5 FIRST ORDER TRANSITIONS 

Landau theory is predicated on the assumption that the order param- 
eter 9(0 is arbitrarily small as t 	0. We saw that if C = at772-Fibii4-1-171, 
then for H = 0, t 0, phenomenological Landau theory gives a descrip- 
tion of a continuous transition i.e. ?7(t) --> 0 as t 	0. Now we consider 
more general expressions for C. 

In constructing C, we saw that there cannot be a term linear in n 
if the symmetric phase corresponds to n = 0. However, it was only the 
symmetry of the problem that prevented us from writing down a term 
cubic in n. Let us now examine the effect of such a term, by considering 

= at772  + .144 Cr73 — 	(5.32) 

with a and b positive. Then, for H = 0, the equilibrium value of n is 
obtained by differentiation with respect to 77 and setting the result equal 
to zero: 

77 = 0, 77 = —c± Vc 2  — at/b, 	(5.33) 

where we have defined c = 3C/ 4b. The solution n o 0 becomes acceptable 
(i.e. real, not complex) for reduced temperatures t satisfying 

2  at c — 	> u 	(5.34) 

i.e. t < t* = bc2  la. Since e is positive, this occurs at a temperature 
greater than Tc  (T, is the temperature where the coefficient of the term 
quadratic in i  vanishes). In the description of a continuous transition, we 
found that n 0 0 only became acceptable for t < 0, i.e. T < Tc. We can 
see what is going on by sketching the form of C, as shown in figure (5.2) 
(without loss of generality, we choose c < 0). 

For t < t*, a secondary minimum and maximum have developed, in 
addition to the minimum at n = 0. As t is reduced further to the value t1, 
the value of at the secondary minimum is equal to the value at n = 0. 
For t < t1, the secondary minimum is now the global minimum, and the 
value of the order parameter which minimises G jumps discontinuously 
from 77 = 0 to a non-zero value. This is a first order transition. 

Note that at the first order transition, n(ti) is not arbitrarily small as 
t 	tr, so Landau theory is not valid. Thus, if there is no symmetry reason 
that forces C = 0, then the cubic term will in general cause a first order 
transition to occur. In more general situations, where the order parameter 
has more than one component, then G — a scalar — is constructed out of 
combinations of the order parameter components which are invariants 
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Figure 5.2 G as a function of 7)  for various temperatures, showing the Landau theory 
description of a first order transition. 

under the symmetries of the physical situation. Then, a sufficient, but 
not necessary condition for the existence of a continuous transition is 
that there are no cubic invariants consistent with the symmetry of the 
problem. 

That the condition is not a necessary condition is shown by the fol-
lowing example: in the replica theory of spin glasses and rubber the 
order parameter is a n x n matrix Q0, which in the limit that n -4 oo, 
becomes a non-negative function q(x): the discrete indices a and 9 be-
come a continuous argument x. The corresponding Landau free energy is 
a functional4  of q(z), with a term cubic in q. However, the sign of the 
coefficient of the cubic term is such that the secondary minimum in C, 
which, in the analysis above causes the first order transition to preempt 
the continuous transition, only occurs for negative and hence unphysical 
values of q. Thus the transition in these cases is continuous despite the 
presence of the cubic term. 

3  See the references in section (2.10): G. Parisi, op. cit; P. Goldbart and N. Golden-
feld, op. cit. 

fro
th
wi
4  A functional is a map from a function to a number, just as a function is a map 
m a number to another number. An example of a functional is a definite integral —

e result of the integral (a number) is determined by the integrand (a function). We 
ll use the notation F{y(x)} to denote the functional F of the function y(x). 
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One final remark about cubic terms in Landau theory. The Landau 
criterion is, of course, only a statement made within the context of mean 
field theory. It is important to realize that the fluctuation effects omit-
ted by mean field theory can change the order of a transition. Two 
examples are: 
(a) The three state Potts models in two dimensions. Mean field theory 

predicts a first order transition, whereas the actual transition is con-
tinuous. 

(b) Type I superconductor-normal metal transition in three dimensions. 
Mean field theory predicts a continuous transition, whereas in fact, 
fluctuations of the electromagnetic field induce a first-order phase 
transition 

5.6 INHOMOGENEOUS SYSTEMS 

We now ask what happens if the order parameter n  is allowed to vary 
in space: n  = ii(r). In a uniform system, 77  is a constant in equilibrium. 
A spatially varying order parameter can arise as a result of an inhomo-
geneous external field H(r). We will show below that it is conceptually 
important to consider a spatially varying order parameter, in order to 
obtain a correct understanding of what the Landau free energy really is, 
even in the absence of an inhomogeneous external field. 

5.6.1 Coarse Graining 

We have already seen that the spatial correlations grow as T TT, 
and that the system contains patches of spins, of linear dimension :4 

in which the magnetisation is approximately constant. This suggests that 
we divide the system up into blocks of linear dimension?  A-1  :4 e(T). 
Within each block, the system is approximately uniform, and as long as 
there are a large number of spins within each block, then it is sensible to 
define the local magnetisation MA(r) within each block centred at r, 

5  For a review, see F.Y. Wu, Rev. Mod. Phys. 54, 235 (1982). 
6  B.I. Halperin, T.C. Lubensky and S.-K. Ma, Phys. Rev. Lett. 32, 292 (1974). A 

similar effect occurs in liquid crystal systems. For a discussion of observations of this 
effect, see M.A. Anisimov et al., JETP Lett. 45, 425 (1987)[ Pis'ma Zh. Eksp. Teor. 
Fiz. 45, 336 (1987)] and P.E. Cladis et al., Phys. Rev. Lett. 62, 1764 (1989). 

7  We define the size of the blocks to be A-1  rather than A because it will be later 
convenient to work in Fourier space, where the wavenumber can be restricted to be 
smaller than A. 
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and to assign a value of the Landau free energy for each block. The local 
magnetisation is then 

MA(r) = TvA1T.)  E (Si) , 	 (5.35) 

where NA (r) = A-d/ad is the number of spins in the block at r. Note that 
it is always sensible to define MA(r) in this way, because near 71, > a, 
and so if we choose A-1  < e(T), then 

a << A-1  < f(T) 	 (5.36) 

and there will be a large number (0(ed/ad)) of spins in the block at 
r, especially as T —> Tc. We must not choose A-1  > e(T) or else the 
magnetisation will not be approximately uniform within each block. 

Dividing the system up into blocks like this is often called coarse 
graining and MA(r) is often called the coarse-grained magnetisation. 
Note that we have attached the label A to M(r), to remind ourselves that 
M(r) is not uniquely defined; one needs to specify A in the prescription 
for defining MA(r). By construction, the coarse-grained order param-
eter does not fluctuate wildly on a scale of the lattice spacing a, but 
varies smoothly in space, with no Fourier components corresponding to 
wavenumbers greater than A. Although we need to specify A in defining 
coarse-grained variables, the procedure will only be useful if the results do 
not depend on the choice of A, at least within the stated range. Thus, in 
practice, A is usually not mentioned explicitly: however, we will see later, 
when we discuss fluctuation effects in chapter 6, that it is important in 
principle to recognise the existence of A. 

What will be the Landau free energy of the system? Clearly, it cannot 
be 

L = 	G (MA(r)) , 	 (5.37) 

because the minimisation would just give the equilibrium value for MA(r) 
in each block. But it is obviously energetically unfavourable to have large 
differences between MA(r) in adjacent blocks; domain walls are costly. 
What is needed is an extra term which acts to penalize differences between 
the magnetisation in adjacent blocks. The simplest analytic expression of 
this sort is 

(5.38) 

In this expression, 5 is a vector of magnitude A-1  pointing to the nearest 
neighbor block to r, and the value of the energy cost is independent of 

V` 	
A-2  

7'  (MA(r) — MA(r +12  

r 1-11-1  2 k 
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the sign of the magnetisation difference. The positive constant 7' is in 
principle temperature dependent. 

Using the fact that MA(r) is slowly varying in space (compared to a), 
we may write 

L = 	ddr IG (MA(r)) + 21 (VMA(r))21 	(5.39) 

where the function £(x) is the homogeneous Landau free energy density 
of eqn. (5.27), and 7 is another positive constant, whose temperature 
dependence is so weak as to be negligible near the critical point. The 
Landau free energy L is a functional of MA(r). It depends on the entire 
function MA(r), i.e. to compute the value of L, we need to know MA(r) 
at all points in space r. Sometimes, L will be called the coarse-grained 
free energy or the effective Hamiltonian. 

The reader may be wondering why the gradient term in £ does not also 
include MV2M. This term seems perfectly acceptable. It is of the same 
order in MA(r) as the term we have actually used; it is isotropic because 
of the V2  and is invariant under M 	—M, so this term is allowed by 
symmetry. However, it is not written down because the identity 

V • (MVM) = MV2M (VM)2 	 (5.40) 

implies that 

mv2m ,dr  a 	= I MVM • dS — 
11 \ 

tvm-vddr 	(5.41) 

and the surface term is negligible in the thermodynamic limit. Hence, the 
term actually written down in eqn. (5.39) is the most general that satisfies 
the requirements above. 

5.6.2 Interpretation of the Landau Free Energy 

We now need to address the issue of what L actually is. In fact, it is 
easiest to say what L is not. It clearly is not the Gibbs free energy ra of 
the system S2, defined by 

To(M) = Fri(H(M)) NMH(M), 	(5.42) 

where Fn is the Helmholtz free energy 

--13Fn(H) = Tr e —PHrz, 	(5.43) 
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Figure 5.3 Sketch of the functions L'(M, 0) = r(M, and the Landau free energy 
density G at zero external field. 

and H(M) is the function defined implicitly from 

N(n)m(H)= - 0H . (5.44) 

H(M) is the external magnetic field required for the magnetisation to 
have the value M. The reasons are two fold: 
(1) T(M) is convex down whilst L(M) is not convex. 
(2) r(M) is a thermodynamic function: thus, a spatially varying M(r) 

has no meaning in this context, since all spatial information has been 
integrated out in the Tr operation. In other words, T(M) depends 
upon Tr e-1311, and therefore cannot depend on particular microscopic 
configurations, which have been summed over in Tr . 

It is useful to revise (1). Dropping the subscript S2, we can find the equa-
tion of the state as follows: 

or 	OF OH
+ 	

OH 
NH + NM --= NH, 	(5.45) 

OM 	OH OM 	
011 

 

i.e. OTIO(NM)= H. At zero field, 

or  
0(N M) = 0, 	 (5.46) 

so it seems that minimising r with respect to M, the order parameter, 
specifies the state of the system. This resembles the defining property of 
the Landau free energy, at least for zero external field, but there is an 
important difference, as we now discuss. 
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In non-zero field, the generalisation of the above suggests that we 
consider as a candidate for the Landau free energy, the function 

(M , F.--: r(M) - M N 

= F (H(M)) NM (M) - . 	(5.47) 

Here, if is simply a parameter, and H(M) is the inverse of the function 
M(H) defined by (5.44). This always satisfies 

0 	- 
(M, H) = 0. 	 (5.48) 

OM 

This identification is incorrect, however, as can be seen when we sketch L 
and L'. Here we discuss the case H = 0, leaving the more general case to 
the exercises at the end of this chapter. For H = 0, L' = r. The form of r 
can be deduced from inspection of figures (2.9) and (2.10). In particular, 
for -M, < M < M8, H(M) = 0 (inverting figure (2.10)), and thus, from 
eqn. (5.46), F(M) must be a horizontal line, as sketched in figure (5.3). 
Hence F is indeed a convex function, whereas the Landau free energy 
density is not. In summary, L' is a qualitatively correct identification 
of the Landau free energy outside the region -M, < M < M, i.e. the 
coexistence region, and above T. 

Having disposed of the attempt to give the Landau free energy a 
strictly thermodynamic interpretation, let us consider the meaning of 
coarse graining. L{MA(r)} is the Gibbs free energy for the system, con-
strained to be in the configuration specified by MA(r). So L depends on 
A implicitly, and should really be denoted by LA. Clearly, there are many 
configurations of the spin {Si} consistent with a configuration MA(r); for 
example, given a spin configuration consistent with the coarse-grained or-
der parameter profile MA(r) = 0(r), where q  is a specified function, then 
another microscopic configuration consistent with the coarse-grained or-
der parameter profile may be obtained by flipping spins in pairs (up-down) 
within each block. 

Formally, we can define the Landau free energy as 

e-L{MA(r)}1kBT = Tr  te-PHrz{si}o(K) {E Si  - MA(r)NA(r)J , (5.49) 
iE r 

where the Kronecker delta is defined as 

ona  _ = { 0 a
1

a  bb; 	 (5.50) 
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Sometimes, the expression (5.50) will be written as 

e_pgmA(r)} = Trie—PH{s.}. 	 (5.51) 

The prime on Tr indicates a sum over microscopic degrees of freedom 
Si, with the constraint that only configurations with the magnetisation 
MA (r) are included. This partial trace is clearly not equal to the partition 
function Z = Tr 	where all microscopic configurations are included. 

So, how is L{MA(r)} related to Z? To get L, we did a partial trace 
of the microscopic degrees of freedom. We will denote by {Si} the mi-
croscopic configurations consistent with a particular coarse-grained order 
parameter profile MA(r) and by {.57} the configurations of the microscopic 
degrees of freedom which are not consistent with that same profile. Since 
the set {Sr} is defined with reference to MA(r), we can write symbolically 
that {S7} = {57}(MA(r)). Of course, MA(r) is just some particular func-
tion in space, slowly varying on a scale of the lattice spacing a. Each of the 
microscopic configurations in {57} is consistent with other slowly varying 
coarse-grained order parameter profiles. The sum over all microstates can 
be separated into two parts: 

= 
	 (5.52) 

{} 	{S*} {3} 

Thus, it follows that 

(5.53) 

The sum E{s.}  is nothing other than a sum over all configurations of 
the semi-macroscopic or coarse-grained variable MA(r). Sometimes, in 
deference to the notion that MA(r) is a smoothly varying function of r, 
the E{s.} is written as 

Z = J DMA e—a{MA(r)}, 	 (5.54) 

where the notation f DMA denotes a functional integral, and we have 
dropped the overbar. We shall shortly see how this is evaluated in prac-
tice, but conceptually, it just means a sum over all smoothly varying 
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functions. Note that e—flL{M̂ (1))  is proportional to the probability that 
the configuration MA(r) is found. 

Once we realise that MA/A(0} is a coarse-grained free energy, and 
not the thermodynamic free energy, there is no theorem requiring that 
it be convex. Nevertheless, the true thermodynamic Gibbs free energy is 
convex. Integrating over the semi-macroscopic degrees of freedom Es., 
i.e. over the configurations omitted in L{MA(r)}, restores convexity. Our 
interpretation of G also explains why we only consider analytic contribu-
tions to L: the partial trace involves a finite number of states (for a finite 
system), and so .0 should be analytic? 

Let us now make a few general remarks, for a system, with coarse-
grained order parameter riA(r). In practice, L{riA(r)} is never really de-
rived in the way we have discussed, i.e. by direct integration of microscopic 
degrees of freedom; the real space renormalisation group method, to 
be described later, comes close to this, but is hard to implement system-
atically. There are other ways to try and motivate Landau theory from 
microscopic considerations, such as the Hubbard-Stratonovich trans-
formation used in exercise 3-3. However, this is not a systematic deriva-
tion, and the approximations involved become uncontrolled as T —+ Tc; as 
we shall see, perturbation theory becomes divergent, and renormal-
isation and the renormalisation group are required to make sense of 
the entire procedure. In some cases, however, this method can be used 
without renormalisation as long as T is not too close to Tc. We shall refer 
to Landau theory motivated in this way as "microscopic Landau theory", 
to distinguish it from phenomenological Landau theory. An example of 
the the microscopic Landau theory occurs in the theory of superconduc-
tivity, where it turns out that the asymptotic critical behaviour occurs 
so close to 21 as to be inaccessible. The experimentally accessible regime 
near T, corresponds to a situation where the fluctuations about mean field 
theory are small, and it is possible to derive the coarse-grained free energy 
for superconductors — the so-called Ginzburg-Landau theory — from 
the microscopic theory of superconductivity due to Bardeen, Cooper and 
Schrieffer? 

8  For a system which is initially defined on a continuum, a suitable regularisation 
must first be given. This is a prescription to define the system as the limit of a discrete 
system. Such a limit may involve technical complications that we will not address here. 

9  This was accomplished by L.P. Gorkov, Soy. Phys. JETP 9, 1364 (1959)[ Zh. Eksp. 
Teor. Fiz. 36, 1918 (1959)]. The derivation is outlined by J.R. Schrieffer, Theory of 
Superconductivity (Benjamin, Reading, 1983), p. 248 et seq. An instructive functional 
integral derivation is given by V. Popov, Functional Integrals in Quantum Field Theory 
and Statistical Physics (Reidel, Dordrecht, 1983), p. 191 et seq. 
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In most cases, however, the procedure is to follow the prescription of 
the phenomenological Landau theory: the terms required by symmetry 
are written down in L{ra(r)}, with more or less arbitrary coefficients. We 
will see later that the coefficients of the starting Landau theory do not 
matter near 21, since they acquire corrections dependent upon T — 
one says that they become renormalised. Close to 711,, the coefficients tend 
towards certain special values, characteristic of the universality class of 
the starting Landau free energy. 

5.7 CORRELATION FUNCTIONS 

For definiteness, we consider systems described by the same Landau 
theory as the Ising model — i.e. the Ising universality class. Denote the 
order parameter by n(r); the Landau free energy L is then 

L = f ddr  [2.(vr,)2 at,n2 
2 

b 	//(r)q(r)1 . 	(5.55) 

We begin this section with some mathematical preliminaries. 

5.7.1 The Continuum Limit 

We will now see how to generate correlation functions from the par- 
tition function Z, 	

Z = Tro.) e—f3L{n(r)) 	 (5.56) 

in much the same way that we generated correlation functions for the 
spin degrees of freedom on a lattice in section 3.7.2. The only difference 
is that here the degrees of freedom 77  are labelled by a continuous variable 
r E 0, whereas in section 3.7.2, the degrees of freedom S were labelled 
by a discrete variable i = 1, 2, ... ,N(S1). In fact, we can simply take over 
all the results to the present case, by going to the limit that a -.4 0, 
N(ft) 	oo, but the volume V = Nnad remains constant. This is 
sometimes referred to as the continuum limit. In practice, many of the 
formulae are unchanged, with the exception that whereas before, in a 
finite system ft, there were a finite number of degrees of freedom 	now 
there are an infinite number of degrees of freedom ?Kr). 

5.7.2 Functional Integrals in Real and Fourier Space 

The functional integral in the partition function looks formal, but in 
light of the above remarks, it may be thought of as follows. For a finite 
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set of variables ni, where -oo < ni < oo, the trace operation is just 

N(f2) 
Tr -al II dni. 

The measure in the functional integral is the continuum limit of eqn. (5.57) 
i.e. is simply an infinite product of integrals. The reader may also be 
concerned that we have dropped the subscript A: how do we implement 
the notion that n(r) is a slowly varying function on the scale of the lattice 
spacing a? We will see later that in practice, functional integrals are often 
performed in Fourier space. Then, the measure becomes 

Tr .E j II d(Re 77k  ) d(Im rik). 	 (5.58) 
licl<A 

We shall sometimes denote the differentials by the shorthand notation 
dilk . Usually, the function n(r) is real, and so is equal to its complex 
conjugate. This means that the Fourier components Tik  and n...k  are not 
independent, but are related by 

Re nk  = Re 77-k; Im rik  = -Ina 77...k. 	(5.59) 

This means that an integral with the measure of eqn. (5.58) counts all 
Fourier components twice. To correctly integrate over each degree of free-
dom once, the k vectors should be restricted to span only one half of k 
space. Thus, we should sum over Fourier components with (e.g.) kz  > 0, 
but Iki < A. We shall denote such an integral by the notation 

i 
Tr .-L..-. i 

fl 
drik . 

k 
(5.60) 

This is also a good point to be precise about Fourier transforms. For 
a finite system of volume V, we define 

7/(r) = 171  E %ell" 
k 

and 
rik  = j ddrn(r)e-ik*r. 	 (5.62) 

v 
Substituting eqn. (5.62) into eqn. (5.61) gives the resolution of the delta 
function 

1 \--"‘ e ik.(r-e) = Or - r'), 
V Z—/ k 

(5.63) 

(5.57) 

(5.61) 



and 

1 E eik*(r—r9 = 1 	V 

V (270d 
(5.65) ddk eik.(r—r')  = 5(r - ri). 
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which is correct because converting the sum to an integral, and using the 
result that the density of states in k-space is V/(27r)d, we get 

(2Vir)d 
ddk (5.64) 

Conversely, substituting eqn. (5.61) into eqn. (5.62) gives the resolution 
of the Kronecker delta 

ddr  ei(k—k1)4. 
= Vbkki • 

In the limit that V -> oo; eqn. (5.63) implies that 

ddr ei(k_w)•r = (2.70do(k - k'), 

and so we have the useful correspondence that as V -> co, 

Wick' --> (27r)dO(k - k'). 

(5.66) 

(5.67) 

(5.68) 

5.7.3 Functional Differentiation 
In a system with a finite number of degrees of freedom 71t, i = 1, . . . , N, 

the partition function depends on the N external fields that may couple 
linearly to the rfi in the HamiltonianP 

Z = Z{Ili} = Tr exp [-O(//f2 - E Hini)] . 	(5.69) 

Correlation functions may be generated by differentiation: e.g. 

°lib)  fl2Z({1  HO) OH= i 
0.110 iZIIIkl, 	(5.70) 

10 Of course the partition function also depends on the coupling constants in the 
Hamiltonian, but we suppress that dependence for the present argument. 
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and the left hand side is a function of the {Hk}, which may be set to zero 
if desired. In field theory, the partition function is sometimes called the 
generating function(al) for obvious reasons. In a system with an infinite 
number of degrees of freedom, the partition function becomes a functional 
of H(r): 

Z {H(r)} = Tr exp {-13 (Ho — I ddr H(r)ii(r))1. 	(5.71) 

The partial derivatives of eqn. (5.70) are replaced by functional deriva-
tives. 

Definition 
Let F{n(r)} be a functional of n(r). Then the functional derivative of F 
with respect to the function n(r') is defined to be 

OFFlii(r) co(r — r')} — F{n(r)}  

	

, „ =Um 	 (5.72) 
bikr e.o 

You should check the following results: 

67;5(r) 	ddr' n(11) = 1, 	 (5.73) 

S(r)
n(V) = o(r — 	 (5.74) 

677(r) J  ddri  (V9/(11))2  = —V2n(r). 
	(5.75) 

In the last example, integration by parts and discarding a surface term 
are necessary. 

5.7.4 Response Functions 

Consider a system described by the Landau theory of eqns. (5.55) and 
(5.56). From the free energy F{H(r)}, we generate the expectation value 
of the order parameter 

OF 
OW) — 5H(r) 

and the generalised isothermal susceptibility 

(5.76) 

xT(r,V) = 0.571((el ) 	 (5.77) 
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The definition implies that if a small change SH(r) to the external field 
H(r) is made, the free energy and the expectation value of the order 
parameter change by 

SF = — 	ddr' NV)) SH(r') J 	(5.78) 

and 

(n(r)) 	7/H+6H — 9711 = J ddliXT(1',1))45H(e). (5.79) 

Using the earlier arguments in section 3.7.2, we find 

.5 2F 
(5.80) 

XT(I.' 1.1)  = 	SH(r)5.11(e) 
(5.81)  

SH(r)
.5 

=kBT z 8H(:)2SZH(r9 	Z1  
6,145;1} 

1 
= 7c—BT,  {(n(r)101)) — OW) (n(V))} = PG(r,r1)- (5.82) 

For a translationally invariant system, 

G(r — r') = kBTXT(r — r'). 	 (5.83) 

This is an example of a principal result of linear response theory, 
namely that response functions are proportional to correlation functions. 
In the translationally invariant case, we can Fourier transform eqn. (5.83) 
to obtain (using carets to denote Fourier variables) 

XT(k) = f3d.  (k). 	 (5.84) 

XT(k) is the wavevector dependent susceptibility, from which the static 
susceptibility sum rule follows: 

XT = Lint XT(k) = Pa(k) ik=o= 8  f ddrG(r). 	(5.85) 

5.7.5 Calculation of Two-Point Correlation Function 

We aim in this section to calculate G(r). We do this in two steps: 
(1) Find the equation satisfied by 19(r) by differentiating the Landau free 

energy and demanding stationarity. 



with 

WO E-- (-1)1/2 4at 
(5.93) 

5.7 	Correlation Functions 	 159 

(2) Differentiate with respect to H(r) to get an equation for XT(r — r'), 
i.e. an equation for G(r — r'). 

Step 1: 

45L 
= 0 	—7V27/(r) + 2077(r) + 2b7/3(r) — H(r) = 0. 	(5.86) 

677(r) 

Step 2: 

OH(e) 

Performing the differentiation, we get 

(-7V2  + 2at + 6b71(r)2 )XT(r, r') = 6(r — r'), 	(5.88) 

which with eqn. (5.83) gives 

8(-7V2  + 2at + 6b7/2)G(r — r') = Or — r'). 	(5.89) 

Thus the two-point correlation function is actually a Green function. 
For translationally invariant systems, 7/ is just given by the equilibrium 
value from Landau theory. 

For t > 0, 77 = 0 and 

(—V2 + 43.2) G(r — I")  = kB7T or  .... r,),  

where 
/ 7 N1/2 

e>(t) E  \2ai) 	• 
For t < 0, , = ±(—atlb)112  and 

(—V2 4. e...2) G(r — r,)  = kB7T5(r  .... r,),  

(5.90) 

(5.91) 

(5.92) 

5 
{ -y\72n(r) + 2atri(r) + 243(0 — H(r)} = 0. 	(5.87) 

In fact, the correlation length e(t) is given by egos. (5.91) and (5.93) 
above and below Tc  respectively. Since e ,-, r1/2, we already see that 
v = vi  = 1/2. In summary, the two-point correlation function satisfies 

(_10 + c2) G(r — r') = kB7716.(r  ..... 
r'). (5.94) 
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There are two obvious ways to solve eqn. (5.94): (1) Fourier transform 
and (2) Transformation to polar coordinates. 

Fourier transform: 

G(k) = kBT 	1 	
(5.95) 7  k2 e-2 •  

At T = Tc, = oo, and thus 'd(k) N  k-2, showing that 77 = 0. The form 
of G(r) in real space is obtained by Fourier transforming eqn. (5.95) and 
using the scaling trick to get 

G(r,Tc) oc d  
7.

1 
 2 (d > 2) — (5.96) 

as advertised in (3.162). 
For T # Tc, we can find G(k) in terms of measurable quantities, using 

the static susceptibility sum rule: G(0) = kBTXT. Substituting this into 
eqn. (5.95) we get 

4.2 

XT = 	 (5.97) 

which together with the fact that v = 1/2 shows that the critical exponent 
-y = 1. The final form for the two-point correlation function is 

G(k) - 
kBT X

7'
(t) 

(5.98) k2  4.2  (t) •  

What is the form of G(r) in real space? We can in principle do the 
Fourier transform of (5.95) but this is a little tedious because of the d-
dimensional angular integrals. The alternative is to go back to the differ-
ential equation (5.94). 

Polar coordinates: 
Without loss of generality, set r' = 0. Since o(r) is spherically sym- 

metric, we write V2  in radial polar coordinates in d dimensions: 

[ 741 i:7rd-1.17 r21 G(r) = Bk777 6(r).  

Again, we use our scaling trick to simplify things: let 

p = r/, c(p) = G(r/). 	(5.100) 

Noting that 

45(1)0 = P(P), 	(5.101) 

(5.99) 
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eqn. (5.99) becomes: 

1 
pd-1 Op 

nd-11 + g(p) = gb(P)' r Op 

where 

(5.102) 

T B g = k7 —e(t)2-d 	 (5.103) 

is a dimensionless measure of the strength of the fluctuations. The equa-
tion (5.102) can be solved in terms of the modified spherical Bessel func-
tion of the third kind written as Kn(P). 

1 	e-P 	d =1; 
-gvkPl= {(2.70-d12 p-(d-2)12K(d-2)12(P) d > 2. 	

(5.104) 

The modified spherical Bessel functions of the third kind with n > 0 have 
the following asymptotic properties: 

7r )1/2 
fn(p) (— CP, p 00, 	(5.105) 2p 

I"(P)  4re-29-yn, p -+ 0, 	(5.106) 

Ko(p),  - log p, p -+ 0, 	 (5.107) 

where T(n) is the Gamma function, equal to (n - 1)! for integer n and 
more generally defined by 

03 

r(z) 	 dt. 	(5.108) 

Thus we recover the results advertised previously for T Te,r >> and 
d> 2: 

71.(1—d)/2 kBT e-  	1  
G(r) - 2(1+d)/2 	y 	7.01-20 (d-3)/2 	(5.109) 

For T = Tc, the correlation length e has diverged to infinity, and the 
appropriate asymptotic limit to use is r << e: for d > 2, e obligingly 
cancels out to give 

kBT r(11-32)  1 G(r)= 7 	4742 rd-2 • (5.110) 

1

Y

1  M. Abramowitz and I. Stegun, Handbook of Mathematical Functions (Dover, New 

ork, 1970), pp. 375-6, 444. 
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5:7.6 The Coefficient 7 

The strength of the correlations in the system depends on the coeffi-
cient 7 in C. What physics controls the magnitude of 7? In this section, 
we will see that the coefficient 7 depends on the range of interactions 
in the microscopic physics. We can see this in two ways, one of which 
is frankly phenomenological, the other of which is based upon a literal 
interpretation of the 'derivation' of Landau theory from the microscopic 
theory. 

In the first way, we recall the definition of the correlation length 

e = j (7/(-4at))1/2  T < Tc; 
(7/2at)1/2 	T > T 

Let us take, for example, the case T > Tc , and write e(t) = e(1)It1-1/2  
where e(1) = (7/2a)1/2, i.e. e(1) is the value of the correlation length 
extrapolated from mean field theory to T = 2Te. Thus, e(1) gives a measure 
of the range R of the correlations well away from Tc. Thus, we obtain 

ry oc R2. 	 (5.112) 

Note that this will be qualitatively correct, but the use of the term 
"extrapolate" in the above paragraph is important. The actual temper-
ature dependence of the correlation length away from the critical region 
may well behave differently from the asymptotic behavior predicted by 
mean field theory. In other words, when T is not sufficiently close to Tc, 
the coefficients an  in Landau theory cannot be simply Taylor expanded 
to lowest order in (T - Tc)/TT , because this is not a small parameter. 
Instead, the full functional form of an(T) is required. 

There is a second way of getting equation (5.112), (e.g.) for an Ising-
like system, which follows from the microscopic Landau theory. A sketch 
of the argument follows; the reader will find it most comprehensible if 
exercise 3-3 has been completed. In the mean field approximation, the 
Gibbs free energy is given by 

rMFT = 1 EJiimimi + 	 (5.113) 
Sj 

where 4,  is the homogeneous free energy contribution, and the first term 
represents the coupling between the average magnetisation IN E- (Si) at 
each site with position ri. If 

J 0 < tri - rat < R; Jib = 0 otherwise, (5.114) 

(5.111) 
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then we can approximate the coupling term as 

	

Ekmimi = - J
4  
a2  E 	

a 
E  {(mi+,- Mi ) 2  (Mi+6

a 
 + Mi 

ii 

	

	 i IskR 

.... 

	

J
4
a2  -, 	(m(ri + b) - m(ri))  2  + 

O(m2) ti 	
L7-• 	 a 
: iskR \ 

2  J 

	

	 • Vm(ri))  2  „.„,
(M 2

, a 
— 	 (./ 

a 4 I 161<R 

zJR2  f ddr 
ad 

(vm(r))2 0(7712),  
P4 	4  

where z is approximately the co-ordination number of the lattice. This 
gives 7 	R2(Jz/4ad) = R2kBTC /ad in agreement with eqn. (5.112), 
where the last equality follows from the result of exercise 5-1(a). 

EXERCISES 

Exercise 5-1 

This question is a continuation of exercise 3-3, in which the mean 
field theory for the Ising universality class is derived heuristically. In the 
chapter above, we have mentioned why this should not be taken too se-
riously. Here, we use the mean field theory calculation of the Gibbs free 
energy to present the analogue of the Maxwell construction for magnetic 
systems, and to motivate the Landau free energy. The notation is given 
in exercise 3-3. 
(a) Consider the case of uniform magnetisation mi = m on a d-dimen-

sional hypercubic lattice, with coordination number z = 2d. Expand r 
to quartic order in m and show that there is a second order transition 
at T, = 2dJ/kB. From the equation of state, check the values of the 
critical exponents /3 and 8. 

(b) Sketch the form of H(m) and m(H) above and below the transition, 
as given by the mean field theory. Notice that your answer contains 
an unphysical portion below Tc. It is tempting to identify the Landau 
free energy with the function 

(m, 	T(m) - mN(SI)II 

where H is a parameter and not the function H(m), and m(H) is given 
by the mean field theory. Show that the condition that L' be minimised 

) 2 

(5.115) 
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with respect to .m implies the equation of state k = k(m). Sketch the 
form of Li(m) above and below the transition for H positive, negative 
and zero. Hence show that the condition that L' be globally minimised 
removes the unphysical portion of the curve m(H). This is Maxwell's 
equal area rule for magnetic systems. Notice the correspondence be-
tween the variables m and H in the magnetic case and p and V in the 
fluid case. 

Exercise 5-2 

Consider a system described by the Landau free energy density 

1 , 	1 
=

2 	-
4
krA  -I-

6 	- hr/ 

where c > 0, and a and b are both linearly proportional to pressure p and 

	

temperature T near the point (Tc,Pc):  a = 	a2p and similarly for b, 
with t = (T - Tc)IT, and p = (p - pc)/pc. As p and T are varied both 
a and b can be made to vanish and change sign. Such a system exhibits 
a tricritical point. An example is a mixture of He3  and He4. In this 
question, we will calculate the phase diagram in the a - b plane for h = 0, 
using Landau theory. First, we set h = 0. 
(a) Consider the case a < 0. Find the extrema of the Landau free energy, 

and study their stability. Hence show that 

(02 a.: 77!  -bb 	+ 11171-4ac 
2c 

(b) Now consider the case a > 0, b > 0. How does /Is  behave in this region? 
(c) Lastly, study carefully the case b < 0, a > 0. What happens here? 
(d) Now sketch the phase diagram in the a-b plane, indicating the order 

of any phase transitions that you have found, and the positions of the 
phase boundaries. Sketch the form of the Landau free energy in each 
of the different regions of the phase diagram. The point a = 0, b = 0 
is called the tricritical point. Can you suggest why? (Hint, think of 
h O.) 

(e) Calculate the thermodynamic critical exponents, by approaching the 
tricritical point along the line b = 0. What do you expect v to be? 

(f) Show that for b small but positive, there is a cross-over from the tri-
critical behaviour which you have found to ordinary critical behaviour 
when b2 ti  -ac. 
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Exercise 5-3 

In this question, we consider a class of magnetic materials which can 
exhibit so-called modulated phases!' For simplicity, we consider the 
case of a system of length L in one spatial dimension, and use the Landau 
function: 

L 	2 	4 	om  ) 2 1  ( 02  m  ) 2 
. LLandau = dx atM — 

2 
bM — 

2 Ox 7 — 	— 
2 

a 
OX 2  

Here a > 0, b > 0, a > 0, and t and 7 may be of either sign. Below, you 
will work out the phase diagram in the at—y plane. 
(a) Define the Fourier transform 

1 M(x) = 
L 
- E etqn917, 

n=-00 
qn = 2rn/ L. 

Write out the inverse transform for Mn  in terms of M(x), and verify 
that you obtain the correct expressions for the Kronecker and the 
Dirac delta functions. 

(b) Write out the Landau free energy in terms of the Fourier components 
Mn. 

(c) By minimising with respect to both n and Mn, show that the system 
exhibits three possible phases: a paramagnetic phase (M = 0), a fer-
romagnetic phase (M 0) and a spatially modulated phase (Mq  0 0, 
q 0). 

(d) What is the wavelength of the modulation? Find the phase boundaries 
and draw the phase diagram. What is the order of the different phase 
boundaries? You should assume that in the modulated phase, you 
only need to consider one Fourier component. 

12  This example is discussed by A. Michelson, Phys. Rev. B 16, 577 (1977). 
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CHAPTER 6 

Fluctuations and the 
Breakdown of Landau Theory 

6.1 BREAKDOWN OF MICROSCOPIC LANDAU THEORY 

We have now come to the point where we must ask: is the preced-
ing theory self-consistent? At the beginning of the previous chapter, we 
motivated Landau theory by the observation that we could replace 

Eksisi=EsiEm(si)+ (53 — (5:7))] 	(6.1) 

by 	siefii  (Si). We can estimate the validity of this step as follows. 
If we make the replacement SiSi --?• Si (Si), then (SiSi) --> (Si) (Si) on 
average (translationally invariant case). The fractional error implicit in 
this replacement can be quantified by the estimate 

i(SiSi) — (Si) (Si) I  Ei = 	 (6.2) 
(Si) (Si) 

where all quantities are calculated using Landau theory for T < Tc. 
The numerator is just the two-point correlation function, and in light 
of eqn. (6.1), we are really interested in the error Eij  estimated when 
lri — ril N  R, the range of the interaction. Let us call this estimate ER. 
Then 

IG(R)I ER = 2  (6.3) 

167 
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where 7/8(T) is the equilibrium value of the order parameter in the bro-
ken symmetry phase. If ER << 1, then mean field theory is a reasonable 
approximation, and is self-consistent. To calculate ER, it was assumed 
that the fluctuations were negligible compared with the mean field, and 
the result of the calculation does not violate this premise. On the other 
hand, if it should turn out that ER > 1, then mean field theory would 
fail, because it would not be self-consistent, i.e. it would predict that a 
quantity is large when it was assumed initially to be small. Let us now 
calculate ER in two cases: near the transition and well away from the 
transition. 

6.1.1 Fluctuations Away from the Critical Point 
The two-point correlation function used in eqn. (6.3) may be written 

in the form 
G(R) = g • ARR.), 	(6.4) 

where f(p) is given by eqn. (5.104). For T << TT, the correlation length 
R, using the considerations of section 5.7.6, and hence the order 

parameter is saturated at the low temperature value: 7/ = 0(1). Thus 

kBT 

	

ER = g x 0(1) ••••• 	c2— 
d 

T 	ad 2_d 	T ( a y 
T
,- 

	

c 	
D 

R2 	1-11c ) 1?) 
(6.5) 

Now (R/a)d is essentially the coordination number z > 1; hence, ER < 1 
and mean field theory is self-consistent. 

In summary, mean field theory works well when Rla is large or (equiv-
alently) the co-ordination number is large. In both cases, each degree of 
freedom is coupled to many neighbors. Mean field theory is exact when 
each spin is coupled to all other spins, as shown by the exercises at the 
end of chapters 2 and 3. In some complex situations, a systematic and 
relatively easy way to generate mean field theory is by extending the 
Hamiltonian to be infinite range. Another way of generating mean field 
theory is to allow the order parameter to have n components and then to 
consider the case n oo. In this limit, each degree of freedom experiences 
a potential due to the other degrees of freedom, which in the large n limit 
acts like the mean field we have already discussed. Systematic corrections 
to the n = oo limit can be worked out in the so-called 1/n expansion. 
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6.1.2 Fluctuations Near the Critical Point 
Near the critical point, the correlation length grows towards infinity 

and, sufficiently close to Tc, R < Using eqn. (5.110), and the fact that 
77, lir, we obtain 

ER 	 , 
1 ( )d 	

(6.6) 

which tends to infinity as the critical point is approached. For the mean 
field theory of the ferromagnetic critical point, # = 1/2; ER starts to 
become large when ItI < 1/z, and mean field theory fails as T -4 Tc. Note 
that we have used the results from eqn. (5.115) which are based on the 
microscopic interpretation of Landau theory, taking seriously the mean 
field approximation to the Gibbs free energy! 

6.2 BREAKDOWN OF PHENOMENOLOGICAL LANDAU 
THEORY 

As we have emphasised, the most satisfactory way to regard Landau 
theory is as phenomenological. Let us now examine the limitations of 
the phenomenological theory. As previously noted, the order parameter 
and Landau theory itself are defined with respect to a length scale A-1, 
which is of the order of (but not larger than) e. Thus, to make the esti-
mate of validity of Landau theory, we should really evaluate E13  when the 
quantities in the numerator and denominator have been averaged over a 
region whose linear dimension is of order e. The region must not be larger 
than e, otherwise the fluctuations will become uncorrelated, and we will 
not obtain a true estimate of their strength. Thus we shall consider the 
estimate2  

ELG = I fv ddr G(01  
JV ddr n(r)2 
	(6.7) 

where V is taken to be the correlation volume: V = e(T)d. The criterion 
that ELG be small for the applicability of Landau theory is often referred 
to as the Ginzburg criterion. 

R.
pp

A.
an
(1
This criterion for the breakdown of the microscopic Landau theory is due to 
 Brout, and is discussed in R. Brout, Phase Transitions (Benjamin, New York, 1965), 
. 33-44 and Chapter 9. 

2  The criterion for the breakdown of phenomenological Landau theory was given by 
P. Levanyuk, Sov. Phys. JETP 36, 571 (1959)[ Zh. Eksp. Teor. Fiz. 36, 810 (1959)] 
d V.L. Ginzburg, Sov. Phys. Sol. State. 2, 1824 (1960)[ Fiz. Tverd. TeIa 2, 2031 
960)]. A good discussion is also given by D.J. Amit, J. Phys. C 7, 3369 (1974). 
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6.2.1 Calculation of the Ginzburg Criterion 

The denominator of ELG is simply 

a ebd  It' 	a 	d = —
b

(1) 1d — 12. 

For the numerator we use the static susceptibility sum rule 

kBTc  ddr G(r) kBTCXT 4altl' 

where, in the sum rule, the integral over all of space is well approximated 
by the integral over the correlation volume, due to the rapid decay of 
G(r). Thus, 

(6.8) 

(6.9) 

where AC is the discontinuity in heat capacity at the transition, as given 
in eqn. (5.29). The condition that Landau theory be self-consistent, i.e. 
ELG << 1, requires that 

it i(4-d)/2 	kB 	(4—d)/2 	 6.12 = t 	( 	) 
4ACe(1)d 

where tLG is the value of the reduced temperature which marks the onset 
of the critical region. Within the critical region, Iti < tw, fluctuations 
dominate the thermodynamics, and the predictions of Landau theory are 
not valid. 

A remarkable consequence of eqn. (6.12) is its dependence on dimen-
sionality. There are three cases to consider: 
(a) d > 4: As t --+ 0, the Ginzburg criterion is always satisfied. In this 

case, Landau theory gives the correct exponents and qualitative pic-
ture. 

(b) d < 4: As t 	0, the Ginzburg criterion is not satisfied. In this case, 
Landau theory is not self-consistent as t ---> 0, and the correct physics 
is beyond the' scope of Landau theory. 

(c) hi the marginal case d = 4, Landau theory is not quite correct, but 
acquires logarithmic corrections from fluctuations: for example, the 
isothermal susceptibility in d = 4 behaves according to 

3-Ilogt11/3. 	 (6.13) 
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A useful way of stating the above conclusions is that for d < 4, the 
quartic term proportional to ,4 in £ becomes increasingly important as 
t 	0, whilst for d > 4, the quartic term is negligible as t —+ 0. We 
shall see why this statement is true when we discuss dimensional analysis 
below. 

The analysis presented here has been for the Landau theory of the 
Ising universality class. Although similar qualitative conclusions apply for 
other Landau theories (systems with different symmetries, critical points 
with different codimension) the details do differ. In particular, whilst it 
is often (but not always) true that there is a dimensionality above which 
Landau theory is self-consistent, that dimension is not always d = 4. 
This special dimension is called the upper critical dimension, and in 
general we can calculate it as follows. For a system whose Landau theory 
is characterised by exponents 7, [3, v etc., not necessarily with the values 
1, 1/2, 1/2, etc., the numerator and denominator of ELG become 

dd  r G(r) N kBTXT 	(6.14) 

ddr  772 edie t 213-vd 	 (6.15) 

Suppressing factors of order unity, the criterion that Landau theory ap-
plies is that: 

< t2S—,.d  as t 	0. 	 (6.16) 

For this to be true, we require that 

2/3 +  d > 	= dc, 	(6.17) 

where dc  is the upper critical dimension. 
One final comment. The Ginzburg criterion serves only to convince a 

believer in Landau theory that it cannot be correct. The actual calculation 
of the critical region, with numerical prefactors evaluated carefully, is not 
reliable. The most compelling reason that this is so is that the calcula-
tion uses the transition temperature of Landau theory, which we will now 
denote by T°. The actual temperature Tc  at which the phase transition oc-
curs must be lower than this temperature, as can be seen by the following 
naive physical argument. Consider a system at some temperature near 
zero, and lower than the true Tc. As explained in chapter 2, the transition 
may be thought of as occuring due to the balance of energy and entropy. 
In Landau theory, the long wavelength fluctuations are neglected, and 
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the transition occurs at some T° where the short range fluctuations dom-
inate the energy. Now imagine the same system at the same temperature 
as before, but including fluctuations of the order parameter i.e. the long 
wavelength fluctuations. Since there are more fluctuations, the entropy 
will be higher, and the system more disordered. At a given temperature, 
the real system is more disordered than as described by Landau theory. 
Consequently, the temperature at which the entropy begins to dominate 
the energy is lower than in Landau theory. 

6.2.2 Size of the Critical Region 

It is a most enlightening exercise to estimate the size of the critical 
region for different systems. This was important historically, because it 
showed why (e.g.) the heat capacity in the vicinity of the superconducting 
transition exhibits the discontinuity expected on the basis of the Ehren-
fest classification, whereas (e.g.) order-disorder transitions in alloys, also 
considered to be a "second order transition;' usually exhibit divergent 
heat capacities 

A convenient way to carry out the estimate is to note that the quantity 
ACe(1)d is the heat capacity of the contents of a region of linear dimen-
sion e(1), which should be about kB per particle or degree of freedom. 
Thus, (AC/kB)E(1)d is approximately the number of degrees of freedom 
or particles in a region of linear dimension e(1). 

Examples: 

(a) Magnetic systems: e(1) N 0(1)A. Thus tLG N 1, and the critical 
region should be readily observable. In particular, the Landau theory pre-
diction that the heat capacity exhibit a discontinuity will not be correct, 
and instead the heat capacity diverges near Tc. 

(b) The superfluid transition in 4He: again, e(1) N 0(1)A and 
tLG N 1. The characteristic A-point behaviour of the heat capacity has 
already been noted. 

(c) Weak-coupling superconductors in three dimensions: e(1) is rough-
ly the diameter of a Cooper pair, typically 0(103)A.. Thus, the number of 
particles in the volume e(1)3  is 0(108). Hence, tLG  10'16. The critical 
region is not generally accessible in superconductors, and the behaviour 
expected on the basis of Landau theory is observed. Note that eqn. (6.12) 
implies that in three dimensions tLG CX e(1)-6, a very strong dependence! 
In the copper oxide (high temperature) superconductors, the orientational 
average of e(1) is of order 10 A, which is up to several hundred times 

3  V.L. Ginzburg, op. cit. 
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smaller than the figure in classic superconductors. This increases tLG by 
a factor of about 1012, making it feasible to observe fluctuation effects 

(d) Weak-coupling superconductors in two dimensions i.e. thin films 
whose thickness £ is much less than the correlation length. The Ginzburg 
criterion then gives tw N  10-5, which is still large enough that fluctuation 
effects in the heat capacity are observable 

The last two examples illustrate the dramatic effect of dimensionality: 
the size of the critical region increases by lowering the dimensionality. 
Finally, some quantities are easier to observe than others, and even in 
classic superconductors, fluctuation effects, most notably in conductivity, 
are observable 

In summary, below the upper critical dimension, as t 	0, Landau 
theory fails. Far away from the critical region, Landau theory gives a quali-
tatively correct description. As the critical region is approached (t -4 tw), 
fluctuations get more important. In some systems, such as superconduc-
tors apparently, there exists a region where fluctuations may be observ-
able, i.e. ELG < 1, but are not yet so large that the interactions between 
them (namely the 714  terms) need to be taken into account. The width in 
t of such a region is, needless to say, dependent upon specific details of 
the system, and is not universal. 

4  S.E. Inderhees, M.B. Salamon, N.D. Goldenfeld, J.P. Rice, B.G. Pazol, D.M. Gins-
berg, J.Z. Liu and G.W. Crabtree, Phys. Rev. Lett. 60, 1178 (1988); these data yield 
a = 1/2, a value predicted by the Gaussian approximation (see next section) which 
neglects the interactions between fluctuations (i.e. the quartic terms in C). These au-
thors also attempted to use the heat capacity measurements to estimate the number of 
components of the order parameter; due to the problems with background subtraction 
alluded to in section 4.6.2, this has been inconclusive to date. 

5  G.D. Zally and J.M. Mochel, Phys. Rev. Lett. 27, 1710 (1971). 
6  Paraconductivity — the precursive drop in the resistivity just above the su-

perconducting transition temperature — was first observed in amorphous bismuth by 
J.S. Shier and D.M. Ginsberg, Phys. Rev. 147, 384 (1966). Subsequent observations 
of fluctuations in both thermodynamic and transport properties are reviewed by W.J. 
Skocpol and M. Tinkham, Rep. Prog. Phys. 38, 1049 (1975). 
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6.3 THE GAUSSIAN APPROXIMATION 

In this section, we will repeat the calculation of the correlation func-
tion G(r - r'), this time using the functional integral of eqn. (5.54) di-
rectly. We shall also introduce the Gaussian approximation to the 
functional integral, and show how the critical exponents are calculated, 
in this, the lowest order systematic correction to mean field theory. The 
Gaussian approximation allows fluctuations about the spatially uniform 
mean field, but assumes, in effect, that the fluctuations are distributed 
normally about the uniform mean field. In this approximation, the fluctu-
ations turn out to be non-interacting i.e. independent random variables. 
This is why the Gaussian approximation is exactly soluble. The Gaussian 
approximation has counterparts in many areas of physics, being simply 
the approximation of a functional integral for a partition or generating 
function by a product of Gaussian integrals. In solid state physics, the 
analogue is the random phase approximation, whereas in field the-
ory, the analogue is free field theory. 

63.1 One Degree of Freedom 

Suppose a random variable q is distributed about some mean qo, with 
a probability distribution P(q) sufficiently sharply peaked that qo  closely 
corresponds to the value of q which maximises P. Then the Gaussian 
approximation is to simply fit P(q) to the form 

P(q) oc e-(q-q0)212a2 	 (6.18) 

where the standard deviation o is essentially the half-width of P. As 
we will see, this approximation is very convenient, because in the gen-
eralisation that q is a vector (qI , q2,... ,qN), the probability distribution 
factorises: 

P(qt, ••• qN) = P(qt)P(q2) • • • P(V). 	(6.19) 

For a statistical mechanical system with one degree of freedom q and 
Hamiltonian H(q), the probability distribution for q is 

P(g) ix  e-i3H(q) e-pH(0)_2 go )2 /A2 
	

(6.20) 

where we have performed a Taylor expansion about the maximum of P(q): 

102H , 
H(q) = H(qo) + 7,771 - go?, 

"q go 
(6.21) 
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and 
1 02H 

— /3-0 (q°).  
Since H(qo) is just some constant, which can be absorbed into the nor-
malization of (6.20) , we can say that (q— q0) — the fluctuation (deviation 
from the mean value) — is distributed normally. Hence, 

(6.22) 

(0= f
ee 

Leo P(q) q  dq  = q°  
(6.23) 

((q ... 0)2) = (q2) ... 4  = (q2)  _ (02 = A2. 	(6.24) 

The condition that the probability distribution be sharply peaked about 
its mean value is just the Ginzburg criterion: 

(q2) (q ) 2 	A2 
EG = 	

(g
)2 	— 

qo  
<1. 

	

2 	 (6.25) 

The free energy is easily calculated in the Gaussian approximation. 
Apart from irrelevant constant factors which simply shift the zero of en-
ergy, 

oo 
e—FIkET =  I _rii e , _—H(q)ABT _co  a 

= e—OH(0)V27rA2.  

Therefore 
1 F = H(qo) — 
2
— kBT log(27rA2). 

6.3.2 N degrees of freedom 
The extension of the above argument is straightforward. For 

q = (qi , q2 , . . . , qN) 

Taylor expansion gives (using Einstein summation convention) 

1 	o \  2H  H(q) = H(cio) + - (qc,  — gotiosoqi3  

The fluctuation matrix 
..... a2H m   

c 5  - aqoq01q=q0 

(go — 03)+ •• • • 
q=qo 

(6.26) 

(6.27) 

(6.28) 

(6.29) 

(6.30) 



1 
F = H(qo) - 2-kBT Elog(2rAl). 

N 

(6.35) 
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can be diagonalized by finding its eigenvalues Ai and eigenvectors v(i). 

If we define 

then 

mc„pv ). 5tivP. (6.31) 

(6.32) 

1 
/3H(q) = 13. (qa) - 

2  E 	, (6.33) 

where the are the components of the normal coordinates, i.e. the eigen- 
vectors of eqn. (6.31). The calculation of the free energy is as follows: 

e-I3F = jc° ildgi  Crill(q)  
—c°  1=1 

e—Mcio) 
1  N 00  

11  dgi e-113(qa-eimas(q/3-4, ) 

-c° 1=1 

= e-pn-( 10 ) H aqi  e-2 L-d11 
q 2̀ /„2 

 

i=1  N 00  
= e-PH(q0) 11 	d , 	!2 gi  e 2qt /Ai

2  I 

1=1 -00  

Performing the final integrations yields 

(6.34) 

6.3.3 Infinite Number of Degrees of Freedom 

The extension to an infinite number of degrees of freedom is straight-
forward, and mathematically well-defined? We evaluate the functional in-
tegral 

e —PF = 	1377 e—PLIn(r))
, 
	 (6.36) 

7  J. Glimm and A. Jaffe, Quantum Physics: A Functional Integral Point of View 
(Springer-Verlag, New York, 1981). 
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with 

1 	 1 L = 	ddr  [_
27

o (v z 	atnz 
2  
_tni4 — Hn] ac,V. 	(6.37) 

v  

In the spirit of the Gaussian approximation, we shall: 
(1) Find the uniform configuration which minimises L. For T > Tc , this 

is rl = 0, whereas for T < Tc, this is rl = 
(2) Expand L about the appropriate minimum to quadratic order in the 

fluctuation. Here, we will work above Tc, so we simply neglect the 
quartic terms in eqn. (6.37). 

The basic idea of the calculation is to discretise the functional integral, 
i.e. consider it as the continuum limit of a discrete statistical mechani-
cal system, defined on a hypercubic lattice, for example, as described in 
section 5.7.1. This can be done in several ways. 

We could replace the derivatives in the Landau free energy of eqn. 
(6.37) by lattice derivatives defined on a lattice of points {ri}, e.g. 

077(0 	n(ri ax) — n(ri) .  
Ox 	a 

(6.38) 

Then we have a statistical mechanical problem of the sort discussed in 
the preceding section, with the variables { qi} being the set {77(ri)}. The 
zeroth order approximation is the uniform state, and the fluctuations 
represented by the gradient terms in (6.37) generate a particular form 
of the fluctuation matrix M, which is block tridiagonal. Although it is 
not difficult to write out the matrix M explicitly, and even to compute 
the eigenvalues Ai, we shall instead compute F by first transforming the 
functional integral into Fourier space. Due to translational invariance, this 
leads to a fluctuation matrix M which is diagonal. 

We begin by writing L in Fourier space, after dropping the quartic 
terms: 

L = I ddr [27(\797)2  + ate] + aoll 

= Ef ,,, v(—k • k') + at) ddr [(1 	 moid ei(k-i-leyr + a0V (6.40) 
kki 

	

= E [3- (1-y(—k • k')-1- at)t-ivik, Ok+i,,,01+ a0V 	(6.41) 
kki 

= vl •c-,22... „ 
2_, bid" [2at + 7k2] + a0V, 	(6.42) 
k 

(6.39) 
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where we have used the results of section 5.7.2. Note that k plays the role 
of a label in these manipulations. In mean field theory, we simply have 
the uniform state k = 0. States with k # 0 represent fluctuations. The 
sum over k is really restricted to states with 0 < jkl < A, since n(r) is 
not defined on length scales shorter than the cut-off A-1. 

The free energy is given by 

e-13F  = r Hi e-r3L 	 (6.43) 
k 

ro 
drik e-N2ati-Yk2)ink12/217  e—Ocip 

7 	(6.44) 
k -c°  

using the notation of section 5.7.2. Writing x Re rik, y = Im rik  , each 
integral is of the form 

ro 

L00 

dxdy e —A(32+Y2)  = 
A 

(6.45) 

Taking account of the fact that n(r) is real, as explained in section 5.7.2, 
we obtain 

e  QF  = (H I  27rVkBT)  e
_pa°v  

k 
2at 7k2  

1 221IkBT  e—p = exp 	.‘ 	 aov 	(6.46) 
2 • [2at 7k2  

where the Ek  in eqn. (6.46) is over all k-space, and so a factor of 1/2 has 
been inserted. Thus 

1 	2rVk
7
BT  F = a0V — — kBT 7 log 

2 	 2at k2.  
(6.47) 

To evaluate this expression, we will convert the sum into an integral using 
eqn. (5.64) for the density of states in k-space. Before we do that, and 
calculate the heat capacity in the Gaussian approximation, it is useful 
to derive the results for the two-point correlation function directly using 
functional integration. 
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6.3.4 Two-point Correlation Function Revisited 

We can calculate the two-point correlation function directly, but a 
quick and dirty way to get the right result is to use the equipartition 
of energy$ Thus, 

2at -yk2 	kB
2
T 

(1%12) 
tat 

- 2 x  (6.48) 

where the factor of 2 accounts for the fact that rik  has both real and 
imaginary parts. Hence 

kBTV  
(illki2) - 2at 7k2' (6.49) 

which we can relate to the two-point correlation function by noting that 
the definition of rik  of eqn. (5.62) implies that 

(1%12) = r dd X ddy eik.(Y-x)  (9(y)71(X)) 

= V(k). 	 (6.50) 

G k = 
kBT 	kBT 	1 	

6.51 () 2at 7k2k2  - 	k2  G2 	
( 	) 

 

in agreement with eqn. (5.95). 
Let us repeat the calculation from first principles, which is really 

equivalent to proving the equipartition theorem. This time, we will start 
with 

7/(r)70,) = 7 eiko+0 
V 	riknie• 

kk,  

Now we must calculate 

ok  =  . ffoodriki drik2  • • • dr/k . . . (him  

driki  thik2  • .. drik ... 	e-PL 	' 

(6.52) 

(6.53) 

where L is given by eqn. (6.42). Except for the terms in nk  and the, all the 
integrals cancel out between the numerator and denominator. Collecting 

8 The theorem of the equipartition of energy states that if a degree of freedom 
makes only a quadratic contribution to the Hamiltonian, then the average energy of 
the corresponding term in the Hamiltonian is kBT/2. 

Thus we get 
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both real and imaginary parts (i.e. using the fact that r)k  = k  ), the 
right hand side of eqn. (6.53) becomes 

f woo  drikdrik, (nkiik,)e-e, Ink P (2 at+'71c2 ) e— Inks 12  (2at-Fryka) 

(6.54) 
j'woo dnkdrik, e-ti177k12 (2a 	) e— Ink/12  (2at 	) 	• 

There are now two cases that must be considered: 
(i) k # ±k'. Then nk  and 77k, are distinct: the integrals in (6.54) factorise, 

and because they are each of the form 

foo 
chik 17k  e-MInk12 (2at-F7k2) = 	 (6.55) 

the result is that 
OM') = 0 	 (6.56) 

ii) k = 	If k = k', then we must calculate (i), whereas if k = -k', 
we must calculate (1%12). In the former case, it is convenient to write 
the measure in plane polar coordinates rik = (Ink), ek), so that 

drlk  = 1%1 d I nk I del, 	 (6.57) 

Then 
2ir 

(ril) jo  dOk e2i°k  = 0. 

Thus, only the case k = -k' is non-zero. 

okno = bk+k,,0 (Inki2) 

(6.58) 

(6.59) 

where, after cancelling out the angular integral over 0k  in the numer- 
ator and denominator, we obtain 

(I%
12) = .fog ink id( ink 1) e-Oat+-rk2)InkPink{2 

fo 	
(6.60) 

e-# (2ot-1-142)1,1k 	. 

Making the change of dummy variable z = Ind, and noticing that 
z dz = d(z2/2), we find that 

(17702\ 	kBTV  
2at 7k2 ' 

as we anticipated from the equipartition theorem eqn. (6.49). 

(6.61) 
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In real space, 

1 
(9(r)9(r)) = 1.7.7 E  ei(k•r+kl.r1)7/k9k1 

kk' 
= _1 v. ei(k.r-Fie•ri) A 	kBTV  

V2  L---,  
kk' 	

-k+k"2at + 7k2  
= 1 	. kBT 	eik.(r—r') . 

V La tat -I- 7k2  
k 

(6.62) 

As expected in a translationally invariant system, G(r, r') is a function 
only of the separation. We can also check the static susceptibility sum 
rule, since 

I, ddr G(r) = iv  dir (9(09(0)) 

_ 1v. kBT  
— V• Lir 2at + -yk 2  
_ 1 v.  kBT  
— V• lir 2at + 7k2  
_ kBT _ kBTxT  
— 2at 

in agreement with eqn. (6.50). 

Iv dd r eik.r  

ViSk,o 

(6.63) 

6.4 CRITICAL EXPONENTS 

We already saw in computing the correlation function that we recover 
the results obtained earlier: II  = 0, v = 1/2, y = 1. The only exponent 
which changes from the mean field prediction is the heat capacity expo-
nent a. Since the free energy is extensive, it is convenient to calculate the 
specific heat, which is the heat capacity per unit volume: 

cv = T82IV), 	 (6.64) or 

where in the Gaussian approximation, F is given by eqn. (6.47). The term 
ao{K} varies smoothly through the transition, and so will not contribute 
to singular behavior. It will give a smooth background to cv. 

In mean field theory, we choose c = 0 for T > Tc, since i = 0 above 
the transition. Remember that the sum over k in eqn. (6.47) does not 
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include k = 0, i.e. the mean field uniform state r/k=o = 0. Below Tc, 
iik=0  0 0, and there will be an extra term in the free energy below Tc, 
coming from this uniform mean field contribution. 

The term with the sum over k represents a contribution to the free 
energy arising from the energy of the fluctuations. To calculate its contri-
bution to c, we just differentiate (6.47): 

c 	02  [1 kBT 	 271-V  \1 
— oT2  2 v 	

log 
( 2at 7k2  Ikl<A 

Write c = A + B, where we define 

A — kBT  E 
4a2  

2V2 Ikt<A  (2at 7k2)2  

and 

(6.65) 

(6.66) 

kB 	2a 
B VT, E 2at 7k2.  (6.67) 

lki<A 
Now we shall examine each term A and B as t —+ 0+. 

We start with A. Replace the summation by an integral, which we 
write as 

A ddk 	1 	1 fA ddk 	1  
/ = 

	

	 (6.68) jo (271)d  (2at 7k2)2  — 72  Jo (27r)d W-2 + k2)2' 

where the lower and upper limits denote the range of Iki, the angular 
integrals are over all of the solid angles of d-dimensional space, and for 
t > 0, the correlation length e = e>, as given in eqn. (5.91). To extract the 
divergent behavior as t 	0+, E  --+ oo, we use the scaling trick. Change 
variables to 

q = ek, 

so that the integral (6.68) becomes 

= 1 	A  ddq 	1  
72 Jo  (2,)d (1+  ,2)2.  

(6.69) 

(6.70) 

As t ---0. 0+, A --+ oo. Does the integral converge? Count powers in the 
numerator and denominator, by writing ddq C.: dq a —1 1 q. Then in the limits 
of the integral, the integrand becomes 

d-1 
q 	_+ (0 	q —> 0 (d > 1); (6.71) (1+ q2)2 	1 qd-5  q --+ 00. 
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In the q -.+ 0 limit for d > 1, there is no problem with convergence. At 
the q --+ oo limit, we use the result that with a > 0, 

°° dq < 
oo for a > 1, 	 (6.72) 

which implies that the integral (6.70) converges for 5 - d > 1, i.e. for 
d < 4. The result of the integral is a numerical constant. Hence we see 
that 

I cc  fo-d) for d < 4. 	 (6.73) 

Since 	oo as t -+ 0, we conclude that A makes a contribution to 
the specific heat c which diverges as the transition is approached. Note 
the physical origin of the divergence. In the unscaled expression for I, 
eqn. (6.68), the upper limit of the integral, A, is a constant and so the 
integral, in its physical units, cannot diverge because of the large k be-
haviour. Indeed, if it diverges, it must be because of its behaviour as 
k -> 0. This is the long wavelength behaviour; hence it is sometimes said 
that the divergence, which we have calculated, is an infra-red diver-
gence. 

What happens for d > 4? From eqn. (6.71), it seems that the resealed 
integral in eqn. (6.70) diverges, but the prefactor of e4-d actually tends 
to zero as the transition is approached and 	oo. The net result is 
finite, something that can also be checked from the unscaled integral in 
eqn. (6.68). Here, as t --+ oo, the integrand becomes proportional to kd-1-4  
and since 

j
A  dk 

o 1-7 < oo fora < 1, 	 (6.74) 

the integral I is finite for 5 - d < 1 i.e. d > 4. Thus, the specific heat 
does not diverge when d > 4. Correspondingly, there are no corrections 
to the critical exponents of mean field theory above four dimensions. In 
summary we learn from term A. that 

A cx e(4—d) t—(2—d/2) for d < 4; 
finite 	 for d > 4. 

Now we examine B. Accordingly we consider the integral 

1 fA  ddk 	1 	A  ddk 	1  
(27)d 2at 7k2  Jo (2.70d e-2 k2 

(6.75) 

(6.76) 

where we are interested in the behavior of J as e 	oo. As before, the 
cause of any potential singular temperature dependence is the limit k 0 



C 
finite 	d > 4, Ii-(2-d/2) d  < 4;  

(6.81) 
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of the integral, since the large k behaviour is cut-off at the scale A. To 
investigate the singular behaviour, rescale q a, so that 

J - 
t2--d 	qd-1 dq  
(270d 0  1 + q2 • 

The integrand behaves as 

qd 
1 	qd-3 q 	00; 

1 	q 2 	10 	q-4 0 ford> 1, 

and so the integral (but not .1) converges to some number in the limit 
e 	oo as long as 3 - d > 1, i.e. d < 2. Thus, for d < 2, as t 0, J and 
hence B diverge: 

(6.79) 

For d > 2, it is simplest to consider the unsealed form of J and check 
finiteness: as e 	ao, 

J 	
k2 	

(6.80) 

which is finite for d > 2 in the k 0 limit of the integral. 
In summary, B does diverge for d < 2, but the divergence is less severe 

than that of A in the same range of d. For 2 < d < 4, only A diverges. 
Thus we see that for d < 4 the fluctuation specific heat behaves as 

(6.77) 

(6.78) 

J 	(2—d) ^ t—(1—d/2).  

A kd-idk 

and in the Gaussian approximation, fluctuations have shifted the expo-
nent a from the mean field value of zero to 

a = 2 - d/2. 	 (6.82) 

As noted earlier, the other exponents are unchanged by the inclusion of 
spatial fluctuations: 

7=1; q=0; 
' 

v = 
2
—* 13=— 

2
• 
' 

r
=3. (6.83) 

This result is quite remarkable. We see explicitly that critical behavior 
depends on the dimension d, but not on the parameters in the Landau 
function, al), a, b, -y. A similar calculation can be performed for T < Tc, 
which the reader is invited to attempt in the exercises. There, one needs 
to consider the n4  term to the extent that (0 = ±(-at/o1/2  defines the 
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minimum about which L is expanded, although in the effective Hamil-
tonian for the fluctuations about (77), the quartic terms are neglected. 
Thus, the Gaussian approximation essentially consists in replacing the 
"potential" for the fluctuations by a harmonic (y = x2) potential. The 
approximation consists of ignoring the 714  terms for the fluctuations, i.e. 
the fluctuations are treated as independent harmonic oscillators. 

Should we expect to be able to observe the exponents of the Gaus-
sian approximation? In general they are not observed, because as t 0, 
the interactions of the fluctuations (the quartic terms) are crucial, as the 
Ginzburg criterion tells us. However, it is, in principle, possible to observe 
the Gaussian exponents in a crossover region between mean field the-
ory and the true asymptotic critical behaviour, as has been discussed in 
connection with high temperature superconductivity (section 6.2.2). 

EXERCISES 

Exercise 6-1 

Consider the Landau free energy 

L = f dd x {-ii-y(V02  atn2 	+ a0.17  

discussed above. We studied the specific heat c+  above T, in the Gaussian 
approximation. Here you will examine T < Tc. 
(a) Writing q = 71, + 0, where 74 is either one of the degenerate sponta-

neous mean field values of the order parameter below 71, calculate the 
Landau free energy for the fluctuation 0. Work to quadratic order in 
0, and express your answer in the Fourier components of 0. 

(b) Calculate the most singular contribution to the specific heat below 
c_, and show that whilst the values of c_F  and c_ depend upon 

the parameters in the Landau free energy, their ratio is universal; find 
this ratio. 

Exercise 6-2 

In the text, we presented the Ginzburg criterion for the validity of 
mean field theory. This determined when the fluctuations were of compa-
rable magnitude to the mean field. This criterion is in principle different 
from the criterion that the Gaussian approximation is an accurate rep-
resentation of the fluctuations. Propose a criterion for the validity of the 
Gaussian approximation, in the same spirit as the Ginzburg criterion, and 
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show explicitly that it leads to the same criterion as the Ginzburg crite-
rion, although with different numerical prefactors. As mentioned in the 
text, such prefactors should not be taken seriously. 

Exercise 6-3 
This question requires you to investigate the remarks made in the text 

about the shift in the transition temperature when Gaussian fluctuations 
are included. The starting point is again the derivation of mean field 
theory from the Hubbard-Stratonovich transformation of exercise 3-3. 
There we showed that the partition function of an Ising system could be 
written as the functional integral 

+„ 

-00 i=1  

In mean field theory, the integral was replaced by the integrand evaluated 
at the extremum tfri. 
(a) Expand the functional S to second order in bi  - Vi  and evaluate 

the resultant Gaussian integral for the partition function. Hence show 
that the lowest order corrections to mean field theory gives for the 
free energy F 

F = S({ i }) — 1 
log det 	- (1- tanh2(i3Vi)Jii)] , 

where irrelevant constants have been dropped from the partition func-
tion. 

(b) Calculate the Gibbs free energy in this approximation. You will find 
that the algebra is eased by writing the second term above as c(bT), 
where c is a dummy variable introduced to keep track of orders of 
approximation, and working to 0(c) only. Also, there is no need to 
explicitly evaluate owvarli. It actually drops out of the calculation! 

(c) In mean field theory, the susceptibility XT  x t-1. From your answer 
to (b), evaluate XT-1  (formally) and hence show that it vanishes at a 
negative value of t. This is the shift in the transition temperature due 
to Gaussian fluctuations. 

9  The expansion, which is being performed here, is sometimes known as the loop 
expansion. 
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Exercise 6-4 

This question is an exercise in multiple Gaussian integrals. The result 
is known in field theory and statistical mechanics as Wick's Theorem; 
we will use it (and pose it as an exercise again!) in chapter 12. 
(a) Prove that 

f° d' XX x q 
(x x,.)= = 	 - qr f c:0  

where A is a real symmetric n x n matrix. 
(b) Using the same notation as above, prove that 

(xaxbx,xd) = (xaxb) (xcxd) (xaxd)(xbxc) (xaxc) (xbxd) • 
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CHAPTER 

Anomalous Dimensions 

We have seen that mean field theory in its simplest form can be im-
proved by inclusion of Gaussian fluctuations. The transition temperature 
is shifted, and the heat capacity does indeed exhibit a divergence rather 
than the discontinuity predicted for a uniform system. On the other hand, 
we saw that such a theory predicted its own regime of inapplicability near 
Tc. The question we now face is: can we continue to improve the theory 
and extend it into the critical region by going beyond the Gaussian fluc-
tuations? In this chapter, we shall see that such attempts are doomed. 
Specifically, the expansion, in which the Gaussian and mean field theo-
ries are the lowest terms, has an expansion parameter which diverges as 
the critical point is approached. We shall also find that even if such an 
expansion were valid, it could not generate critical exponents with values 
different from the (incorrect) values already derived. 

7.1 DIMENSIONAL ANALYSIS OF LANDAU THEORY 

We shall now show that for d > 4, perturbatively including the inter-
action of the fluctuations leads to no new singular behaviour as t 0. On 
the other hand, for d < 4, this perturbation theory is divergent: the per-
turbing parameter grows unboundedly as T —+ Tc! Our immediate goal, 

189 
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then, is to identify the single parameter in which a systematic expansion 
can be attempted. 

We start with the partition function written in the form of a functional 
integral: 	

Z = f Dile-131, 	(7.1) 

where 	
L = f ddr {•il  7(V 71)2  + ate + b94  — Hn} . 	(7.2) 

It is conventional, and convenient, to rescale the order parameter i so that 
the coefficient of the term (V77)2  in AL is just 1/2. This is accomplished 
by defining 

=-7 
 
07) 1r 1.2  1/2 
	2 ss.  at7 = 	u40 	.i10,72. 	(7.3) 

Here we will consider the case H = 0. Then 

lieff {q5} .7.=" 1,13 = f ddr  [22.(0 
0)2 
	roo2 24u0041 	(7.4) 

We now proceed in two steps. 
(1) Identify the dimensions of the various quantities in eqn. (7.4). 
(2) Rewrite (7.4) in terms of dimensionless variables: so, /to, which are 0 

and ue  scaled by the appropriate powers of re. 

Step 1 
Heff is dimensionless: [Heff] = 1, where we have used the notation [...] to 
denote the dimensions of the quantity enclosed. What is the dimension of 
0? Each term separately in eqn. (7.4) must have dimension 1. So 

[./ ddr (70)21 = 1 = Ld . L-2[4 ]2 = 1 	(7.5) 

Hence, 	 [0] = Ll—d/21 
	 (7.6) 

where L is the unit of length. Similarly, we can compute [re] and [no]: 

[.1 ddrro(1)21= 	ddr u004} = 1, 	 (7.7) 

and thus 
[To] = L-2; [uo] = vi-4. 	 (7.8) 
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Step 2 

From eqn. (7.8) we can use 7.0  to define a length scale, independent of 
dimension. Indeed, since TO  oc (T -TO, we know that within the Gaussian 

- 1/2 approximation 7.0  1/f(T)2. Using ro 	as the length scale is equivalent 
to measuring lengths in units of the correlation length E(T). 

We have already seen that Gaussian functional integrals are easy to do. 
So we will write the partition function as a Gaussian functional integral 
with a modification, which we treat by perturbation theory. We define the 
following dimensionless variables: 

_ 	- 
L1

r
-d/2; x E 	4/0  = Ld-4 • L ro 1/2  . 	(7.9) 

Then eqn. (7.1) becomes, apart from unimportant multiplicative con-
stants, 

Z(Tio)=
J   Dwexp [-Ho{cp) - Hint{90)] 

	
(7.10) 

where 

Ho  = ddx 	(v(p)2 	(002} 	 (7.11) 

Hint = ddX {741710(P4} • 	 (7.12) 

If Hint  = 0, the integral (7.10) is just the Gaussian approximation, which 
is exactly soluble. The partition function has, however, a contribution 
from the interactions, Hint . We might imagine that if uo  < 1, then we 
could use perturbation theory: 

	

Z = 	Ds° CH° e'llint 

1 

	

= 	Dw CHI)  (1 - Hint -1- '1(Hint )2  - • • .) • (7.13) 

The important point is that the partition function depends on one di-
mensionless parameter Tio; this is our perturbation parameter. Written 
out explicitly, 

hi) = uoro 	= uodd (d-4)/2 	-4 /2)t(d-4)/2 (7.14) 

As t 0, for d < 4, hip 	00 and perturbation theory becomes mean- 
ingless! On the other hand, for d > 4, tho 	0 as t 0, and mean field 
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theory becomes increasingly accurate as T 	. Thus, dimensional anal- 
ysis already enables us to determine the upper critical dimension, and the 
importance of fluctuations. Note that all of these considerations are based 
around the notion that the quadratic (and exactly soluble) terms in the 
Landau free energy represent a good zeroth order approximation. It is 
reasonable, but not obviously true, that perturbation theory will break 
down when the expansion parameter is of order unity. Thus, the critical 
region is the range of t for which uo > 0(1). From eqn. (7.14) we find 
that 

2(4—d)/2 > 

	

a2  (1)d 	
(7.15) 

 

must be satisfied, as t 	0, for perturbation theory to make sense. This 
is nothing other than the Ginzburg criterion eqn. (6.12). 

This argument is, of course, by no means compelling. All we have 
shown is that the individual terms in the perturbation theory are diver-
gent as t --+ 0. This does not mean necessarily that the actual perturbation 
series is divergent, when summed. For example, the function exp(—t) has 
the expansion 

c° 	n  
exp(—t) = E ( n! 	 (7.16) 

O n=0 

in which each term diverges as t 	oo, although the sum is perfectly 
finite. This example illustrates that care must be taken with manipulating 
perturbation expansions. Resummations of apparently divergent series 
form the basis for the most accurate estimates of critical exponents. 

Although we have argued plausibly that for d < 4 perturbation the- 
ory must fail because the expansion parameter diverges as T 	TT , the 
converse is not necessarily true. For d > 4, it is not true that perturbation 
theory necessarily converges: the smallness of the expansion parameter is 
not a sufficient condition for convergence. In fact, the perturbation theory 
is asymptotic, as suggested by a simple physical argument due to Dyson! 
What happens to Z if we make the transformation Tio —170? Then the 
integral for Z becomes 

	

Z(—Tio) = / Dye—  fddx[i(V(P)2ii,p9+fddxri.,,,
"

4 	

(7.17) 

which is clearly divergent due to the sign of the quartic term. On the other 
hand 

Z(io) = Thp e— 
df dx  (vr 02 +.1. 	f rio  co4 

(7.18) 

1 F.J. Dyson, Phys. Rev. 85, 631 (1952). 
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is convergent (at least when regularised as we have discussed). Thus rto  = 
0 cannot be a regular point, and therefore perturbation theory about 
it should not converge. Although asymptotic, the perturbation theory is 
Borel summable, and resummation techniques can be applied to yield 
accurate estimates of critical exponents? 

7.2 DIMENSIONAL ANALYSIS AND CRITICAL 
EXPONENTS 

We can also use dimensional analysis to study the critical exponents 
themselves. The following naive argument is intended to bring out the 
full mystery of critical exponents, and apparently demonstrates that it is 
impossible for the critical exponents to have values different from those 
predicted by Landau theory! 

As an example, let us consider what dimensional analysis tells us 
about the two-point correlation function. This is given by 

e—  Heir cr 
G(r - ri) E (4)(r)0(1))) — f 

f 	

{0} 

H 

( )0(r1)  
eft 	" 	

(7.19) 

Thus 
[G(r - ri)] = [0]2  = L2-d. 	 (7.20) 

In k-space 

G(k) = 117 
J 

ddxdd y Cik.(x—Y) G(x — y) 	 (7.21) 

from eqn. (6.50), which means that 

[G(k)] = 
L--dvd L2-d = L2. 	 (7.22) 

Thus, if we make a change of the units of length by a factor of E from L 
to L' s eL, then G should transform3  according to the rule that CL/2  = 
GL2, which• implies that 

'Oki) = E-2&(k), 	 (7.23) 

2 For a detailed discussion of these concepts, see the monograph by J. Zinn-Justin, 
Quantum Field Theory and Critical Phenomena (Clarendon, Oxford, 1989), Chapter 
37. 

3  We are using the convention that a physical quantity Qp represented by the symbol 
Q is actually given by Qp = Q[Q]. The symbol [Q] designates the units that must be 
appended to the number Q in order to obtain the dimensionfull quantity Qp. Under a 
change of units, Q changes, whilst Qp  is, of course, invariant. 
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where k' = ek. This result must always be true: it follows simply from 
the definition of the two point function. Let us check it for the Gaussian 
approximation 	

&(k) — k2 
1 
 ro . 	 (7.24) 

If we rescale lengths, then from eqn. (7.8), ro = € 2r0  and the transformed 
correlation function becomes 

— €2k2 
1 
 on) 

c  _ 2a(k) 	 (7.25) 

in agreement with the general considerations of eqn. (7.23). 
But what happens at Tc? In defining the critical exponent n, we have 

asserted that at long wavelengths (k -+ 0) 

.d(k, 	k-2+71  , 	 (7.26) 

which implies that under a change of length scale 

d'(1e) C2+17&(k). 	 (7.27) 

This clearly disagrees with our preceding general dimensional consider-
ations, and must be incorrect, unless i = 0, the value given by Landau 
theory. 

We can also use the same argument, perhaps with the flaw somewhat 
more transparent, for the correlation length exponent v. The correlation 
length e has dimensions [e] = L. From eqns. (7.6) and (7.8), the only 
independent quantity is ro  a t, which has dimensions [ro] = L-2. Hence 

r-1/2 N  i--1/2 
o (7.28) 

which is indeed the Landau theory result, but in disagreement with the 
correct result that v 0 1/2. 

This is, in some sense, the central mystery of critical phenomena: any 
value for the critical exponents other than that given by Landau theory 
seems to violate dimensional analysis. 

What has happened? How can eqns. (7.26) and (7.23) both be correct? 
The answer is that there must be another length scale which comes into 
the dimensional analysis, apart from the correlation length. This seems 
unreasonable: after all, we have spent considerable effort to show that long 
wavelength physics is the only dominant physics near the critical point. 
Nevertheless, the unwelcome conclusion is that the only other length scale 
in the problem is the microscopic length scale — the lattice spacing a in 



7.3 	Anomalous Dimensions and Asymptotics 	 195 

the original physical problem, or the short distance cut-off given by A-1  
— and this too must be included in the dimensional analysis. 

To see how this works, consider first the correlation function at Tc: 
this must have the form 

a(k, TO a a'1 k-2." 
	

(7.29) 

so that under a change of scale 

= C2O(k,Tc ) 
	

(7.30) 

as dimensional analysis requires. A calculation of the two-point function 
in the k 0 limit at T, must have the form of eqn. (7.29). The exponent 
n  can therefore be obtained by examining the behaviour of G(k, TO at 
fixed k as a ---> 0: we should obtain G N  an. 

Similarly, for the correlation length, if we redo the dimensional anal-
ysis taking into account the microscopic length scale a, we have the rela-
tions 

	

[e] = L; [a] = L; [ro] = 	 (7.31) 

Using r0  a t, we conclude that 

= r0-1/2f(roa2), 	 (7.32) 

where f(x) is some function to be determined. Near the critical point 
t -> 0, the argument of f tends to zero. If it so happens that 

	

f(x) x6 , as x -4 0 	 (7.33) 

for some 9 to be determined, then as t -> 0, 

,2-4/2+0a2e. 	 (7.34) 

Thus the critical exponent governing the divergence of the correlation 
length is 

v = 2 - - O. 	 (7.35) 
1 

The difference between this result and that of Landau theory is the so-
called anomalous dimension 0. In the case of eqn. (7.29), the existence 
of a non-zero value for 77  can be considered to come from the fact that 
has acquired an anomalous dimension n/2. 
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7.3 ANOMALOUS DIMENSIONS AND ASYMPTOTICS 

The existence of anomalous dimensions is quite remarkable. Reasoning 
by "common sense,' one would think that since the correlation length 
is much larger than any microscopic length scale as T 	Tc, we could 
ignore the microscopic details of the theory, such as a. Thus, it would 
be legitimate to replace a/ << 1 by 0. If we did this, then a would not, 
of course, appear in any final formula, and the critical exponents would 
be those of mean field theory. To make it perfectly clear how reasonable 
this assumption sounds, replace a in the above argument by the radius of 
the proton! It would be ridiculous to think that the radius of the proton 
could affect phenomena on the scale of (e.g.) microns or larger. Thus, 
we normally expect that we may disregard physical phenomena which 
are characterised by widely different length scales. Yet our conclusion 
above is that this does not apply to critical phenomena! The often-heard 
statement that "the only important length scale near the critical point 
is the correlation length" is not only untrue, but misleading — if it were 
correct, critical phenomena would be very dull indeed. 

How, then, does the microscopic length scale affect correlations at 
macroscopic distances? We have seen that the existence of anomalous di-
mensions follows from the presence of the microscopic length scale. How-
ever, the value of the anomalous dimension does not in general depend on 
the microscopic length scale, although it could in principle. Mathemat-
ically, the situation can be summarised as follows. Suppose that we are 
interested in some quantity F that depends in principle on a and . Then, 
it is only legitimate to replace alb by 0 in the function F(a/) if F(x) is 
not singular in the limit x -4 0. There are three possibilities for this limit: 

(1) F(x) 0 as x -4 0. 
(2) F(x) ,••• x —'4)(x) as x 	0, with a > 0 and 4(x) regular in the 

limit that x 0. 
(3) None of the above. 

From the preceding discussion, it follows that critical phenomena are in 
case (2) above. 

Now a very interesting question emerges: are there other phenomena 
in nature where case (2) occurs? If so, can we conclude that these phe-
nomena too exhibit anomalous dimensions and the analogue of critical 
exponents, which are apparently at odds with common sense dimensional 
analysis? The answer to both of these questions is an unqualified yes! 
Such phenomena are to be found in many areas of physics, although 
they have continually provoked expressions of surprise from those who 
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have come across them Relatively recently, Barenblatt has provided an 
extensive summary of such problems and their solution, accomplished by 
making the explicit hypothesis that anomalous dimensions exist combined 
with numerical methods Historically, however, the problem of anomalous 
dimensions in critical phenomena was discovered and solved apparently 
without knowledge or recognition of these other phenomena exhibiting 
case (2) asymptotice In later chapters, we shall see how the renormali-
sation group solves the problem of anomalous dimensions both in critical 
phenomena, and in the problems discussed by Barenblatt. It would also 
be of value to apply Barenblatt's methods to critical phenomena, but this 
has not yet been accomplished. 

7.4 RENORMALISATION AND ANOMALOUS 
DIMENSIONS 

To end this short, but important chapter, let us briefly discuss the 
notion of renormalisation in field theory. Field theory is a term used 
to denote any model system described by a functional integral such as 
that of eqn. (7.1). We have seen how this arises in statistical mechanics, 
but such functional integrals may also be used to compute Green's func-
tions (and hence scattering cross-sections) in quantum field theory. 
In quantum field theory, however, the time variable t is first analytically 
continued from the real axis to the imaginary axis r (r —it), in or-
der that the functional integral be convergent. Such field theories are 
sometimes known as Euclidean, because after the analytic continuation 
has been performed, the metric of space-time, with interval s given by 
ds2  = dr2  dr2, describes a flat (Euclidean) manifold rather than the 
original curved manifold of Minkowski space, in which ds2  = dr2  — dt2. 

hi the early days of quantum field theory, it was hoped that the union 
of quantum mechanics, together with the known classical fields (i.e. elec-
tromagnetism) would form a self-consistent theory. This hope did not 

4  To the author's knowledge, the first explicit recognition of case (2) was the cal-
culation of how a converging shock wave is focussed; see G. Guderley, Luftfahrt-
forschung 19, 302 (1942) and L.D. Landau and K.P. Stanyukovich (1944), published in 
Unsteady Motion of Continuous Media (Academic, New York, 1960). 

5  G.I. Barenblatt, Similarity, Self-Similarity, and Intermediate Asymptotics (Con-
sultants Bureau, New York, 1979). 

6  It is an interesting historical point that Landau had first-hand knowledge of anoma-
lous dimensions in both critical phenomena and the problem of the converging shock 
wave, but apparently made no reference to a connection between them. 
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transpire, because certain quantities turned out to be infinite when calcu-
lated. Without going into the technical complications of quantum electro-
dynamics, we can illustrate the problem with the effective Hamiltonian 
of eqn. (7.4), for ro  > 0 and uo = 0. Suppose, for the sake of argument, 
that eqn. (7.4) represented some "fundamental" physical theory, and we 
wished to calculate the quantity (0(1)2). Being a fundamental theory, 
there is no obvious reason for there to be a cut-off in the definition of 
4) or Heff: indeed the most natural assumption is that space-time is a 
continuum. Thus the cut-off A, which we have always stressed is present 
in critical phenomena, should actually be assumed to be infinite in this 
model quantum field theory. Hence, 

(0(r)0(11)) = 	
ddk 	1  

7.36 
Jo 	

( 
(27r)d ro k2 	

) 

Setting r = r' we find that 

Sd
(2 
kd-ldk  

(0(02) =
Joy 

(7.37) 
7r)d 	ro  k2  ' 

where Sd  is the surface area of the unit sphere in d dimensions. The 
integrand behaves as k" as k 	oo, and so the integral diverges for 
d > 2. This model quantum field theory, and indeed the Landau theory 
of critical phenomena, is not well-defined without a finite length scale A. 
(This is, of course, why we were careful to motivate Landau theory with 
its associated length scale right at the beginning.) 

In quantum field theory, however, where we have assumed that there 
is no microscopic physics to contribute a cut-off A, we must try to make 
sense of the divergence that we have found. The procedure that is followed 
— renormalisation — consists of a sequence of steps. First, an artificial 
cut-off A is introduced into the theory; this is sometimes known as reg-
ularisation. Next, the desired calculation is performed, and is of course, 
perfectly finite. Finally, the limit A —> oo is taken, absorbing the resultant 
infinities into a redefinition of the parameters in 14E, such as 7.0  and uo. 
Of course, it is by no means obvious that this can be done, but for a class 
of quantum field theories, the method can be carried out. 

We will describe the whole process in much more detail in a different 
context in a later chapter, so for now, do not worry about what this renor-
malisation really involves. The essential point is that the renormalisation 
procedure introduces a new length scale into the problem. Thus, as we 
have seen in the preceding section, anomalous dimensions may, and in-
deed do appear. When we come to discuss the physics of problems whose 
asymptotics is in the category of case (2), we shall explain the precise 
physical significance of renormalisation. 
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EXERCISES 

Exercise 7-1 

Consider the Landau free energy 

L  = 	doix  12(1702 	!Ton} 

(a) Use the Ginzburg criterion or dimensional analysis to find the upper 
critical dimension. 

(b) Comment on the accuracy of the tricritical exponents which were cal-
culated in exercise 5-2, as a function of dimension. 

(c) Show that higher powers of (VO) and higher derivatives of 0 are neg-
ligible as T Tc. 
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CHAPTER 8 

Scaling in Static, Dynamic 
and Non-Equilibrium Phenomena 

We have seen that there is a plethora of critical exponents a, #, 7, 6, 
11, v near to the critical point, and we have discussed how in principle 
they may take on values that differ from those predicted by mean field 
theory. The next question to address is: are these exponents independent? 
Remarkably, we will see that in fact, of these six exponents, only two 
are independent: the rest can all be derived from knowledge of any two 
through the so-called scaling laws. One example of a scaling law is the 
Rushbrooke scaling law' 

01-2#1-7=2, 	 (8.1) 

whilst another example is 
/57=i5 +7. 
	 (8.2) 

Eqns. (8.1) and (8.2) are examples of thermodynamic scaling laws: they re-
late exponents describing thermodynamic quantities. There are also scal-
ing laws for the correlation function exponents: (e.g.) 

2 — a = vd, 	 (8.3) 

1  First conjectured by J.W. Essam and M.E. Fisher, J. Chem. Phys. 38, 802 (1963) 
and derived as an inequality by G.S. Rushbrooke, J. Chem. Phys. 39, 842 (1963). 
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which is known as the Josephson scaling law. 
These and other scaling laws were discovered in a curious fashion, 

round about 1963. It was noticed that early estimates of the critical expo-
nents obtained from numerical methods approximately satisfied eqn. (8.1), 
whereupon it was proved that thermodynamics actually implied 

a+ 2,8+7> 2. 	 (8.4) 

Subsequent work indicated that in all cases examined, with different di-
mensions and different model systems (in what is now known as the Ising 
universality class), eqn. (8.1) is satisfied; the inequality of eqn. (8.4) is sat-
isfied as an equality. Many exponent inequalities have now been proved, 
with varying degrees of rigour. However, the fact remains that they are 
always satisfied as equalities. Finally, static scaling was discovered by B. 
Widom, and this lead to the static scaling hypothesis, which is one of 
the topics of this chapter. From the static scaling hypothesis, the scaling 
laws in the form of equalities can be derived. 

In this chapter, we will explain the static scaling hypothesis, and show 
how it leads to scaling laws. We will also mention the topic of dynam-
ical scaling, in which time-dependent correlations in equilibrium near 
the critical point exhibit scaling. Finally, we shall introduce the topic of 
scaling in non-equilibrium systems. The latter topic is quite modern, 
and differs from the preceding ones in that it is not yet understood as a 
consequence of a detailed theory. Scaling and scaling laws near the crit-
ical point of equilibrium systems follow from the renormalisation group 
theory, which is also capable of calculating the values of the critical ex-
ponents and the form of scaling functions when used in combination with 
approximate methods such as perturbation theory; it remains an open 
question to what extent these renormalisation group considerations ap-
ply to non-equilibrium systems. This will be discussed further in later 
chapters. 

8.1 THE STATIC SCALING HYPOTHESIS 

The static scaling hypothesis, written in the form appropriate for a 
magnetic system, is an attempt to encode two experimental results in one 
equation. The two results have already been presented: the growth of the 
magnetisation M slightly below Tc  in the absence of an external field H, 

M(t,h = 0) = 1±Altr t < 0, 	(8.5) 



8.1 	The Static Scaling Hypothesis 	 203 

iMi 	
FM . • 

It's . • 
• 

• F•+  
• M 

I hl / t 

Figure 8.1 Sketch of the magnetisation measured at different temperatures in dif-
ferent external magnetic fields h. When the data is plotted in the manner shown, the 
data points fall onto only two curves, one for the data above To, the other for the data 
below Z. 

and the behaviour along the critical isotherm, 

M(t = 0,h) = ±Blhi ll6  , 	(8.6) 

where, as usual t = — Tc)/TT  and h = H/kBT. 
Widom2  noticed that these results followed from a single formula for 

M(t, h): 

M(t, h) = 	(hlt°)  
(

O
—)rF;i(h/(-0°) t < 0, 	

(8.7) 

which is intended to be valid for lid, Iti < 1, but for an arbitrary ratio of 
Ihi to It!. The exponents )3 and z are assumed to be universal, as are the 
scaling functions FM(x) and Fm-  (x). A is sometimes referred to as the 
gap exponent. 

We will investigate the significance of the scaling hypothesis shortly, 
but first, let us see how it can be tested experimentally. In figure (8.1) is a 
sketch of experimental data for the magnetisation as a function of reduced 
temperature t and field h. If the data were plotted against temperature, 
there would be one curve for each value of the external field h. However, 
when Milt113  is plotted against Ihi/itIA, all of these curves collapse onto 
two curves, one for the data above Tc, one for the data below T. This 
phenomenon of data collapse is the principle significance of scaling. Of 
course, in order to observe data collapse, it is necessary to choose the 
correct values of Tc, # and A, which are not usually known before hand. 

2 B. Widom, J. Chem. Phys. 43, 3898 (1963). 

• 
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Thus, the observation of scaling requires manipulation of the data, and 
leads to estimates of Tic  and the critical exponents. 

Simple conditions on the functions 11, suffice to establish the scaling 
relations between critical exponents. Our considerations here are no more 
complicated than those of section 1.1, where we discussed dimensional 
analysis for the phase speed of waves. 

8.1.1 Time-reversal Symmetry 

From time-reversal symmetry, we know that 
M(t, h) = —M(t, —h). 	 (8.8) 

Hence, using eqn. (8.7), 
114,(x)= —11(—x). 	 (8.9) 

The scaling functions FL are odd functions. 

8.1.2 Behaviour as h 0 

Assuming the smoothness of the limit h —+ 0, we should recover the 
zero field result 

m(i,o) 	(— 
0 

00Fii(0) t < 0; 
t > 0. 

Thus, we require that 
= 0; 13,}(0) = non-zero constant. 	(8.10) 

8.1.3 The Zero-field Susceptibility 

We can differentiate eqn. (8.7) with respect to H and set H = 0 to 
obtain the isothermal susceptibility. 

n1 	OM 
H=0 

1 OM 
(8.11) 

XT(11  = 	= OH = kBT Oh h=0 
Using eqn. (8.7), we obtain 

1 MO dFtf  
) Itlf"Pit(0). 	(8.12) 

XT  = ICBT ItI4  dx kz' x=0 

Assuming that Flf(0) 0 0 or oo, then we can make the identification 

	

— O = —'Y 	 (8.13) 
from the definition of the exponent 7. So 

	

A=P+7, 	 (8.14) 
and is not a new critical exponent after all! 
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8.1.4 The Critical Isotherm and a Scaling Law 

Now we consider the limit that t 0, but h is small but non-zero. The 
argument of Fk, namely hilti°, tends to infinity. However, we expect that 
in this limit, M(0, h) is perfectly well-behaved and finite. In fact, from 
the definition of the critical exponent 8, we know that 

	

h116. 	 (8.15) 

For this to be the result, we use the same trick that we used between 
eqns. (1.6) and (1.7). We assume that 

FM(x) 	 (8.16) 

as x oo, where A is some power to be determined. Then we have 

	

M(0,h) ,  Itla ( 
14,  

—) 	ItIP-AAhA. 	(8.17) 
12 

Now, as t 0, we will either get M 0 if /3 - AA > 0 or M oo if 
< AA. Neither alternative is acceptable physically, and so we conclude 

that we must have 

	

= AA 
	

(8.18) 

in order that the t dependence "cancels out". This implies that 

	

M(0,h) ,  ha, 	 (8.19) 

and hence 
(8.20) 

FM(x) ti  x1/6  as x -> oo. 	 (8.21) 

These results imply a scaling law. Combining eqns. (8.18) and (8.20) we 
find that 

= ig/A = 	 (8.22) 

But from eqn. (8.14), A = /3 + y. Thus we conclude that 

/38 = 13+ 8. 	 (8.23) 

Does it work? We have not said anything about how we got the expo-
nents. If eqn. (8.23) is true, it should apply to exponents obtained from 
experiments and exact theoretical calculations; satisfying this criterion 
is a desideratum of approximate theories. Also note that the scaling law 
(8.23) is independent of dimension. Using the values from table (3.1), one 
can check that the scaling law is indeed well satisfied, even though the 
values of the exponents are quite different in the different systems and 
dimensions. 
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8.2 OTHER FORMS OF THE SCALING HYPOTHESIS 

8.2.1 Scaling Hypothesis for the Free Energy 
There is nothing special about writing the scaling hypothesis in terms 

of the magnetisation. We could equally well start with the free energy per 
unit volume or at least its singular part Mt , h): 

h f,(t,h) = t2-  a Ff  H . t° (8.24) 

We can derive the Rushbrooke scaling law as follows. The magnetisation 
is obtained by differentiation: 

1 	8 f 	, h 
M  = - IcBT Oh

, r
'' t2-12-41 Ff ( t ) ' 	(8.25) 

which must tend towards t3  as h -+ 0. Hence 

# = 2 - a - A. 	 (8.26) 

The isothermal susceptibility is obtained by one more differentiation: 

XT  , t2-a-24, Ft: (II.) 
PA 7  

and tends towards t"--Y as h -4 0. Thus 

2 - a - 2A = -7. 	 (8.28) 

Eliminating A, we obtain the final result 

a + 20 -I- 7 = 2. 	 (8.29) 

8.2.2 Scaling Hypothesis for the Correlation Function 
Finally, we remark that it is also possible to write down a scaling form 

for the two-point correlation function in the form 

1 	h 
G(r,t,h) = rd 2+n FG rti'' Oh 7  

from which more scaling laws follow, involving 
n, ii:: 

2 - a = dv 
7 = v(2 - 77) 

(8.30) 

(8.31) 
(8.32) 

(8.27) 
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The Josephson relation (8.31) involves d explicitly, and is an example of 
a hyperscaling law — one which involves d. The hyperscaling relations 
were for a long time on a slightly less secure footing than the thermody-
namic scaling laws: numerical work on the d = 3 Ising model seemed to 
indicate minute violations of the hyperscaling laws, and this is discussed at 
length in some early books and articles. However, the discrepancies have 
been shown to be artifacts of approximations, and it is generally agreed 
that the hyperscaling relations are satisfied For Hamiltonians with long-
range power law interactions, however, it is known that the hyperscaling 
relations are not satisfied. 

8.2.3 Scaling and the Correlation Length 
What is the origin of scaling and the scaling laws? The principle phys-

ical idea is that the divergence of e(T) as T Tc  is responsible for all the 
singular behaviour; the only length scale which enters dimensional analy-
sis is e(T). As we have already discussed, this statement is too naïve, and 
actually incorrect, in the sense that if it were literally true, the critical 
exponents would have the mean field theory values. To be precise, let us 
consider the singular part of the free energy per unit volume h, which 
has dimensions L—d. Then, we may write that 

kfsT 
„d  e—d (A + B  M ai  

B 
+ B2 (-

12)(72 
+ • • .) (8.33) 

where the i are whatever microscopic length scales are present, A, Bi are 
coefficients with weak (non-singular) temperature dependence, and cri are 
non-negative exponents. In the limit that t --> 0, the correlation length e 
diverges, and the corrections to the leading behaviour in eqn. (8.33) may 
be ignored. Thus 

,r0T2 
 fs 	d 2 

- 	 = 4 
4 

-CX 	 (8.35) 

using the definition of the exponent a, and the Josephson scaling law 
(8.31) follows immediately. 

3 See Physics Today, Nov. 1980, p. 18 and the article by B. Nickel in Phase Transi-
tions, Proceedings of the Cargese Summer School 1980 (Plenum, New York, 1982). 

fs
T 	

(8.34) 
BT 

which immediately leads to the Josephson scaling law by differentiation 
to obtain the specific heat: 
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Let us close this section by giving another example of this sort of 
analysis, this time for the two-point correlation function G(k) in k-space. 
For simplicity, we will just write the formulae as if there were only one 
microscopic length 1. Then, remembering the dimensional considerations 
of section 7.2, we have 

.d(k) = 	("e(Ice) [1+ A (I) + • • .1 	 (8.36) 

where g is a scaling function to be determined, a is an exponent to be 
determined, a is non-negative and A is a weakly temperature-dependent 
quantity. At the critical point, e has diverged to infinity; to recover the 
result that G ti  k-2+n the factors of 4' must "cancel out" for large 4.. 
Thus '4(x) N  x-a as x 	oo, and G 1-2-a - lc a at the critical point. 
Thus, we identify a = 2 - rl. On the other hand, we know from the static 
susceptibility sum rule that G(0) cc XT. Assuming that §(x) --> constant 
as x 	0, we also make the identification that a = 7/v, where we used 
the facts that E N t-P and XT  N t-1. Hence, we conclude that 

2 = 2- r/. 	 (8.37) 

In conclusion, the simple rule for constructing scaling hypotheses is 
to find the dimensions of the dependent and independent variables: as 
we have seen in chapter 7, everything can be expressed in terms of some 
given length scale, which we will usually take to be the correlation length. 
Then, the scaling form is given by writing the desired quantity in terms 
of combinations of independent variables and the correlation length that 
are invariant under scale transformations. The principal assumption of 
the scaling hypothesis is the way in which the correlation length enters 
the theory. That is, if a quantity Q has the dimensions of LY, in scaling 
theory, that quantity appears in the scale invariant combination Q. 
However, in principle, this need not be the case if the quantity Q acquires 
an anomalous dimension. In other words, we do not know a priori that 
the correct dependence is not Qea-Y1-a, where 1 is the microscopic length 
scale. This point was explicitly brought out in the discussion following 
eqn. (8.36). As we will shortly see, the scaling hypothesis follows from the 
RG; in particular, the RG gives a criterion for which variables acquire 
anomalous dimensions, and which do not, and allows the calculation of 
the anomalous dimensions, when combined with other information, such 
as perturbation theory. 
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8.3 DYNAMIC CRITICAL PHENOMENA 

Equilibrium statistical mechanics is primarily concerned with static 
quantities. Nevertheless, time-dependent fluctuations of a system in equi-
librium also fall within the scope of equilibrium statistical mechanics, 
through the use of the fluctuation dissipation theorem. We shall not 
give a comprehensive treatment of this important topic here, but merely 
present some key points.! 

8.3.1 Small Time-Dependent Fluctuations 

In order to discuss the time-dependent fluctuations about equilibrium, 
we need to specify the dynamics of the system. The level of description 
that we have found useful in dealing with static critical phenomena is 
that of Landau theory and its associated order parameter n. If we wish to 
preserve this level of generality (and we do!), we must address the question 
of the dynamics of the order parameter. In general, it is an impossible task 
to derive this from the dynamics of the microscopic dynamical variables 
of the system. However, in the spirit of Landau theory, we may guess 
the form of the result that would be obtained if we were to derive the 
dynamics from the microscopic physics. This we do as follows. 

In equilibrium, the spatial configuration of the order parameter is 
given by 

bL 
4(0 = 0

' 

where we will assume that L is the by now familiar expression (5.55) 

L = 
J 

dari 27(V97)2  an2  + 44  — 	, 	(8.39) 

where we have introduced the definition a = at to avoid confusion be-
tween the reduced temperature and the time t. If the system is slightly 
out of equilibrium, it is not unnatural to guess that the rate at which the 
system relaxes back to equilibrium is proportional to the deviation from 
equilibrium. This assumption of linear response is purely phenomenologi-
cal, and leads to the following equation for the rate of change of the order 
parameter: 

On(r) = 	8L 
Ot 	4571(r)' 

(8.40) 

4  For a comprehensive treatment, see the review article by P.C. Hohenberg and B.I. 
Halperin, Rev. Mod. Phys. 49, 435 (1977). 

(8.38) 
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where F is a phenomenological parameter, which we will assume to be in-
dependent of v, and weakly temperature dependent (i.e. it has no singular 
temperature dependence). 

This equation (known as the time-dependent Ginzburg-Landau 
equation in the theory of superconductivity) cannot possibly be a correct 
description of the approach to the equilibrium state, because the equilib-
rium state is actually a global minimum of L. Equation (8.40) will cause 
the order parameter to evolve towards local minima, but not necessar-
ily the global minimum. To ensure that the system approaches the global 
minimum, we must remember that actually the order parameter dynamics 
is not purely relaxational, but may exhibit fluctuations, arising from the 
microscopic degrees of freedom. These "thermal fluctuations" will some-
times cause the order parameter to move' further away from equilibrium 
during its time evolution, and thus prevent the system from becoming 
trapped in any metastable minima of L that may be present. This state 
of affairs may be modelled by introducing a noise term into eqn. (8.40) 
to give 

On(r) 
- 	((r,t), 	 (8.41) at 	457700 

where the noise is assumed to be a Gaussian random function. This just 
means that C(r, t) is chosen at random from an ensemble of space and 
time-dependent functions, with a probability distribution 

PC({C(r, t)}) oc exp [— —21D  dt ddr C(r, t)21 	(8.42) 

with the constant of proportionality formally being equal to the inverse 
of the functional integral 

/ 	exp [-
2n 

dt ddr 021 , 	(8.43) 

and the variance of the distribution being D: 

(C(r, 2))4. = 0; (C(r, t)C(ri, e))c 	— 1.1)5(t — t'). 	(8.44) 

The notation (• • -)c  denotes averaging with respect to the probability dis-
tribution Pc. In order that the stochastic differential equation (8.41), 
usually known as the Langevin equation, leads to the correct equilib-
rium probability distribution P, for 97, the amplitude of the noise must 
be related to the temperature of the system. This makes sense physically, 
because the origins of 4' are the microscopic degrees of freedom whose in-
teraction with the order parameter is responsible for equilibration in the 
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first place. The probability of finding the order parameter in the configu-
ration 70) is a function of time, and is given by 

P,7({7 (r)}, t) = (0 7/(r) - T(r, t, {C})Dc 	(8.45) 

where TO, t, {(}) is a solution of the Langevin equation (8.41) for a par-
ticular realisation of the noise ((r, t). This can be understood as follows: 
the delta function in the average is zero unless the configuration 7/(r) 
requested is matched by the solution of the Langevin equation. Within 
a small region of function space, the probability of finding the desired 
function is then the integral of the delta function over the small region: 
this essentially counts the frequency of occurence of the desired event. 
Finally, we average over all realisations of the noise C. The time evolution 
of Pn  may be found by differentiating the definition (8.45), and using the 
Langevin equation (8.41), as shown in the appendix at the end of the 
present chapter. The result is the Fokker-Planck equation 

L 	D .1C)77  

	

at .1)77 ({77(r)} i) = dl r.' 67-7r56 	-2-6777)} . 	(8.46) 

As t -+ co, the solution to the Fokker-Planck equation approaches the 
equilibrium solution 

2rLti(r)})  
P,7{71(r)} exp 	 (8.47) 

which should be the Boltzmann distribution. For this to be the case, the 
strength of the fluctuations D must be related to the temperature T and 
the strength of the dissipation F by 

D = 2FkBT. 	 (8.48) 

This result is an example of the fluctuation-dissipation theorem. The con-
nection with the dissipation is actually quite natural and rather general. 
The resistance that a body experiences in moving through a gas is due 
to the bombardment of gas particles. This same bombardment is also 
responsible for Brownian motion. We now proceed to discuss the phe-
nomenological consequences of the order parameter dynamics that we 
have introduced. 

8.3.2 The Relaxation Time 

Consider the system above 71, where 7 (n) = 0. Time-dependent 
fluctuations of the order parameter are generated by the noise term ((r, t) 
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and evolve according to eqn. (8.41). For small deviations from equilibrium 
an  E n — lb the dynamics can be linearised to yield 

0577 
— — 

[on 
To 

mode 

= T( 

ro-1  

time 

2ar. 

[6%1 

— -yv2,5771+ C 	(8.49) 

is 

(8.50) 

+ Ck 	(8.51) 

wavenumber k being 

• (8.52) 

at  

where the zero wavenumber relaxation 

Taking the Fourier transform gives 

05% 
Ot 

with the relaxation time of the 

r-k 1  

rk 

with 

1 	-yrk2  , 

The zero wavenumber relaxation time for the uniform component of the 
order parameter is proportional to 1/a, and hence diverges as T --+ 
As explained earlier, this is the origin of critical slowing down. When 
k 	0, rk  is finite as T -+ 	. 

The response of the system to an external perturbation is described by 
the order parameter susceptibility or response function RT(k,ca), defined 
by 

(ij(k co)) 
50,(k,w) lim 	C  

Oh(k,w) 	
(8.53) 

ri-+O  

where h(r, t) is a space and time dependent external driving force on the 
system, added to the right hand side of eqn. (8.41), and the response 
function is evaluated in the linear response regime where h is small (h 
0). The quantity ö (igk,o,))c  is the difference between the average taken 
with h # 0 and the average taken with h = 0, and the response function 
in real space and time is related to 5Z7.(k, co) by the Fourier transform 

1  X"-̀  	611))  :(k 	t) XT(r, t) = V 2_, 27 e 	XT(k,ce). (8.54) 

As we mentioned in section 5.7, response functions are related to corre-
lation functions, and are readily measurable using scattering techniques, 
using light or neutrons, for example. 
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When we ignore the non-linearities in the Langevin equation (8.41) 
and perform the noise average, we simply obtain 

-iT(k,w) = -1
7  	

• rk  
(8.55) 

However, a calculation of the response function beyond this level of ap-
proximation — essentially Landau theory — is more problematic, be-
cause it is necessary to average over the noise C the non-linear term in 
eqn. (8.41), which is cubic in n. Attempts to implement this calculation 
using perturbation theory suffer from the same problems that we found 
for the statics, in the critical region. 

8.3.3 Dynamic Scaling Hypothesis for Relaxation Times 

The dynamic scaling hypothesis is a set of assertions about the scal-
ing behaviour of the relaxation time and the response function in the 
critical region, and implies a relationship between a priori independent 
exponents. First, we consider the relaxation times rk. We saw in mean 
field theory that Tk was a function of t and k, with the following limits: 

Tk = (7111' T = Tc, 
(2aTt)-Y k = 0; 

with the new critical exponents y = 1 and z = 2. Just as the limiting 
behaviour of the magnetisation given by eqns. (8.5) and (8.6) followed 
from the static scaling hypothesis (8.7), so we can generalise eqn. (8.56) 
for the relaxation time, and derive it from the single scaling hypothesis 
that 

Tk(t) = 	Er(kE(t)), 	(8.57) 

where 17,- is a scaling function, and now we do not expect z and y to have 
their mean field values necessarily. In order that the scaling hypothesis 
reproduce the facts summarised in eqn. (8.56), we require that Er(x) is 
constant when x -+ 0. In the opposite limit that T Tc  but k 0, the 
correlation length diverges as 	r", and we require that as x 	oo, 
Fr(x) N xviv in order to cancel out the singular t dependence and yield 
a finite result for rk. Thus, we find the scaling law 

z = 
	

(8.58) 

so that 
Tk  = t'F,(kt-v). 	(8.59) 

(8.56) 
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8.3.4 Dynamic Scaling Hypothesis for the Response Function 

We can write a scaling form for the response function itself, by as-
suming that 

RT(k,w) = t'Fx(ke(t),coro), 	 (8.60) 
where v is a critical exponent and Fx  is a scaling function. In the case that 
k = 0 and co = 0, the static susceptibility sum rule implies that Fx(O, 0) 
is a constant and that the exponent v is simply the static susceptibility 
critical exponent 7. Now let us examine the consequences of the dynamic 
scaling hypothesis when k = 0. As T 	Tc , ro diverges like f. rzv. If 
the scaling function has power law behaviour in the limit that its second 
argument diverges, we require that Fx(0, x) •••., x-11" in order that the 
susceptibility remains finite. Hence we find that at the critical point, the 
zero wavenumber frequency dependent response function has the power 
law form 

-y/zP 
w) (A)  • 	 (8.61) 

Actually, the dependence of the response function on frequency co must 
occur through the combination -ice, because of the form of the Langevin 
eqn. (8.41). Hence, the correct form for the scaling of the response function 
at the transition is 

	

RT(0,40) = A(-i40)-11", 	 (8.62) 
with A being a real constant. From this, we can make another striking 
prediction: the phase lag 5 between the driving force h and the response 
of the order parameter is given by 

6 -m tan-
1 (Im 34.(0,4.))) 

(8.63) 
Re 	7,(0, co)) 

iry 
(8.64) 

which is a universal values This result can also be obtained from eqn. (8.61) 
using the Kramers-Kronig relations. 

8.3.5 Scaling of the Non-linear Response 
Scaling ideas can also be used to go beyond linear response theory. 

The basic idea is to consider the non-linear response function 

= 	 (8.65) 

5 See J.P. Clerc et al., J. Phys. (Paris), Lett. 45, L913 (1984) for an application 

to the elastic response of fractal networks, and A. T. Dorsey, Phys. Rev. B 43, 7575 

(1991), for an application to scaling at the superconducting transition. 
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where all quantities are at zero wavenumber and frequency. Dimensionally, 
X'4 should have the same dimensions as )(7., and so we might anticipate 
the scaling form 

Xnl = rilvFx"1(he), 	 (8.66) 

where the exponent y describes the dimensions of h: [h] = L—Y, and the 
combination he does not change under scale transformations. At Tc, the 
assumed finiteness of xnl requires that e cancel out of eqn. (8.66), leading 
to the relation 

el 	 (8.67) 

which is analogous to the behaviour of the equation of state on the critical 
isotherm. 

A more interesting example of the scaling of the non-linear response 
is to the dynamics of currents near a critical point. The transport prop-
erties of a system may differ greatly above and below T,, and this has 
consequences for the scaling of response functions. Here, we consider the 
critical dynamics near the superconducting transitions and write down 
the scaling theory for the frequency-dependent conductivity o-(co). Below 

o(w) N  p.1(-ice), which follows from the London equation relating 
the electric field E to the current j in a superconductor: 

E  = 57 p„e2j' 
m 	

(8.68) 

where ps  is the superfluid density i.e., the "number density of super-
conducting electrons" and e and m are the electron charge and mass 
respectively! It can be shown8  that near the superconducting transition, 
the superfluid density varies as ps  N  f 2-4. Hence, the conductivity should 
exhibit the scaling form 

o(w) = 
e2—d+z (we ). 	 (8.69) 

Our present concern is the non-linear d.c. conductivity, defined by 

j = o(E)E. 	 (8.70) 

To construct a scaling theory for this quantity, we need to know the dimen-
sion of the electric field E. This follows from the fact that E N 0Alfrt, 

6  S.A. Wolf, D.U. Gubser and Y. Imry, Phys. Rev. Lett. 43, 324 (1979); D.S. Fisher, 
M.P.A. Fisher and D.A. Huse, Phys. Rev. B 43, 130 (1991); A.T. Dorsey, op. cit. 

7  M. Tinkham, Introduction to Superconductivity (McGraw-Hill, New York, 1975), 
p. 4. 

8  B.D. Josephson, Phys. Lett. 21, 608 (1966); see also section 11.1.4. 
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where A is the vector potential. The latter quantity has dimensions of 
inverse length, as can be seen by the fact that it enters the Ginzburg-
Landau theory for the superconducting order parameter in the combi-
nation (-iV - 2eA/c). Thus [E] = L-1T-1. Using the dynamic scaling 
hypothesis that the relaxation time r r•-• Ez, the scaling form for a(E) 
becomes 

a(E) = e2-d-I-ZF:1(el+ZE). 	 (8.71) 

At Tc, using the by now familiar argument, we conclude that 

o(E) E-(2-d+z)/(1+z). 	 (8.72) 

8.4 SCALING IN THE APPROACH TO EQUILIBRIUM 

The preceding section dealt with time-dependent phenomena in or 
very close to equilibrium. In this section, we show briefly how scaling 
ideas are beginning to be applied to systems far from equilibrium. It 
is convenient to group these systems into two classes: those systems in 
a driven or non-equilibrium steady state, and those systems which 
are approaching equilibrium after a non-infinitesimal displacement from 
the equilibrium state. An example of the former category is the random 
deposition of particles on a substrate, resulting in a solid phase growing 
at a steady rate? This simple dynamical process results in a surface that 
develops fluctuations in its height as it grows, as depicted in figure (8.2a), 
and the outcome of numerical simulations is well accounted for by simple 
dynamical scaling ideas. The second class of systems is exemplified by 
the problem of the spinodal decomposition of a binary alloyP At high 
temperature, the two species A and B are uniformly mixed in the alloy, 
but below a critical temperature Tc, the uniform state is no longer stable, 
and the equilibrium state of the system is two co-existing domains of 
different compositions. It should come as no surprise that this system 
can be modelled by the Ising model, in a similar way to that in which 
a fluid may be modelled by a lattice gas. What is of interest here is not 
the equilibrium statistical mechanics, but the time dependence of the 
phenomenon. In a solid solution, the time scales are relatively slow, and 
it is possible to observe the decomposition occuring over several hours. 
Observations at late times reveal a convoluted domain structure with the 

9  Brief reviews are given by F. Family, Physica A 168, 561 (1990) and by B.M. 
Forrest and L.-H. Tang, Mod. Phys. Lett. B 4, 1185 (1990). 
10  The scaling theory is reviewed by H. Furukawa, Adv. Phys. 34, 703 (1985). 
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Figure 8.2 (a) Growth of a fluctuating surface. (b) Caricature of the time evolution 
of domain structure during spinodal decomposition. The dark regions represent the 
A-rich phase, and the light regions represent the B-rich phase. 

two phases closely interlocked, as sketched in figure (8.2b). This structure 
develops by domain merger and growth, in a way which is statistically 
self-similar in time, and both experiments and numerical simulation are 
well described by scaling theory. Although RG ideas have been applied 
to the first class of problems, there is still no such understanding of the 
scaling behaviour observed during the approach to equilibrium. 

8.4.1 Growth of a Fluctuating Surface 

Consider a planar substrate in d dimensions of linear dimension L, 
on which atoms are being deposited at random from above to form a 
growing aggregate whose surface has dimensionality d' = d— 1, as shown 
in figure (8.2a). There are several ways in which the incoming particles 
can attach themselves to the existing aggregate, but here we shall just 
mention ballistic deposition, a model situation in which particles fall 
vertically onto the substrate and stick to the aggregate at the first point 
of contact. Although it is far from clear that this represents any realistic 
growth process, it is of interest to examine the behaviour of this model; 
moreover, it is found empirically that the results exhibit universality in 
the sense that the scaling and associated exponents observed in computer 
simulations are common features to a wide variety of growth processes. 
What, then, is the behaviour of this simple model? 

The stochastic element of the growth process — namely the random 
position of the deposited atom — and the absence of any surface relax-
ation dynamics suggest that the growing interface will not be completely 
smooth, but will be rough, in some sense. Let us describe the interface by 
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its height h(x, t) above the point x, where x is a d'-dimensional vector in 
the plane of the substrate. The average height at any time is just 

Tt(t, L) 	(h(x,t)) 	(8.73) 

and the width, a measure of the fluctuations in the height, is 

W(t, L) EE (h(x, i) — WO, 02) . 	 (8.74) 

Note that we are assuming that the interface has no overhangs, so that 
h(x, t) is a single-valued function, and (...) denotes an average over x. 
A variety of empirical and heuristic arguments suggest that although the 
width is ostensibly a function of two variables, it actually has the scaling 
form 

W(t, L) = Lx f (tL-  ), 	(8.75) 

where x and z are critical exponents and f is a scaling function. Eqn. 
(8.75) is presumably valid for times long enough that the influence of the 
initial conditions has decayed, but still short enough that the width is not 
time independent. We will refer to such a time regime as one exhibiting 
intermediate asymptotics. On a finite substrate in equilibrium, the 
width scales as W LX, showing that the scaling function f(x) tends 
towards a constant for large values of its argument x. On the other hand, 
when L oo, the length of the intermediate asymptotic regime diverges. 
Crudely speaking, it takes an infinite amount of time for the system to 
equilibrate, and the width simply grows as a power law function of time: 
W N  t', where # is an exponent to be determined. The scaling form (8.75) 
implies that in order for W to remain finite as L 	oo, (x) N xxi z as 
x 	0. Thus W(t,L) N tilt for short times or large systems. 

The scaling description above begs the question: how can one substan-
tiate the starting point, eqn. (8.75), and how can one actually compute 
the exponents that appear? A partial answer to these questions has been 
obtained by the assumptionn that the equation of motion for the interface 
height may be modelled by a Langevin equation of the form12  

Oh 	2  
at  = 	h — A h)2  C, 2 

(8.76) 

where v and A are constants, and C(x, t) is a Gaussian random noise, as 
in the earlier discussion of dynamic critical phenomena. Note, however, 

11 M. Kardar, G. Parisi and Y.C. Zhang, Phys. Rev. Lett. 56, 889 (1986). 
12  This Langevin equation seems to allow for the possibility that 8t h can be negative 

at some time and position where C(r, t) is sufficiently negative. 
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that the two-point correlation function of the noise is not related to the 
temperature of the system through the fluctuation-dissipation theorem 
(8.48), because the system is not in thermal equilibrium. This equation of 
motion — often referred to as the KPZ equation — is not of the form of 
the time-dependent Ginzburg-Landau equation (8.41), because the non-
linear term cannot be obtained from differentiating a coarse-grained free 
energy functional. This may be viewed as an additional reflection of the 
fact that interface growth occurs far from equilibrium, and in a more 
microscopic description of interface growth, the non-linear term is found 
to be purely kinetic in origin; in fact, the KPZ equation is nothing more 
than the assumption that at each point on the interface, the velocity vn  
along the outward normal is just 

	

vn = a+vim+ 	 (8.77) 

where te is the curvature at that point. Thus A is the velocity of a flat 
interface in response to a thermodynamic driving force, v is a positive 
constant so that the motion tends to reduce the curvature everywhere, 
and C represents the random deposition of particles. The KPZ description 
of interface motion is closely analogous to dynamic critical phenomena, 
and it is this analogy which has been exploited using the methods of 
critical phenomena, including the renormalisation group, to address the 
question of scaline 

8.4.2 Spinodal Decomposition in Alloys and Block Copolymers 

When a homogeneous binary alloy is quenched rapidly from its spa-
tially uniform state of homogeneous composition at high temperature to a 
temperature below the critical point, phase separation takes place. Even-
tually, the system returns to equilibrium, which at this reduced temper-
ature is a state with two coexisting domains. In figure (8.3), a caricature 
of the phase diagram is shown, with the compositions ca  and cp of the 
two domains in equilibrium at temperature Tq  indicated schematically. 
The coexistence curve follows by equating the chemical potentials of the 
two phases, and is purely thermodynamic in origin. On the other hand, 
this section is concerned with the time dependence of the approach to 
equilibrium, focussing only on the role that scaling arguments have had 
in describing this phenomenon. 

13  For a comprehensive discussion of the attempts to study non-equilibrium growth 
using the methods of critical phenomena, see the article by B. Grossman, H. Guo and 
M. Grant, Phys. Rev. A 43, 1727 (1991). 
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Figure 8.3 Idealised phase diagram of a binary. alloy. The full line is the coexistence 
curve, whilst the dashed line represents the classical spinodal. 

There are two principal mechanisms for phase separation, nucleation 
and spinodal decomposition, which may be described in a simplified 
way, as follows. Within the coexistence curve, the homogeneous state is 
not the global minimum of the free energy; however, there may still be a 
region within the coexistence curve where the homogeneous state is a lo-
cal minimum, and is stable to small local fluctuations in the composition. 
This is known as metastability, and in this region of the phase diagram, 
the system may proceed from the homogeneous state to the phase sepa-
rated one only when a sufficiently large thermal fluctuation in the local 
composition spontaneously occurs. This process is known as homoge-
neous nucleation; the local composition fluctuation may be thought of, 
for present purposes, as a droplet of one of the two phases coexisting in 
equilibrium. For small droplets, the surface free energy cost of creating 
the interface separating the droplet from the rest of the system outweighs 
the bulk free energy benefit of creating within the volume of the droplet 
the state which represents the true minimum of the free energy, and thus 
the homogeneous state is stable to such fluctuations. On the other hand, 
if the droplet is sufficiently large, the bulk free energy overwhelms the sur-
face energy, and the free energy of the system is reduced by the presence 
of big enough droplets. Hence the homogeneous state is unstable towards 
sufficiently large fluctuations. If the surface free energy per unit area of 
the droplet is a, and the bulk free energy per unit volume is c, then the 
difference in free energy between the system with one droplet present of 
radius R and the system with no droplets is 

OF = 4raR2  — 
4 
—TeR3, 
3 

(8.78) 
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showing how the bulk and surface free energies compete. Notice that 
AF(R) is a maximum for R = Rc  = 2cr I e. The dynamical theory of nucle-
ation describes the likelihood of forming such droplets from the thermal 
fluctuations in the system, and the subsequent evolution of the droplets; it 
turns out that droplets with R < R, shrink after they have been created, 
whereas droplets with R > 1'4 grow. This oversimplified picture has many 
elaborations, but is in essence correcei In summary, nucleation is the de-
cay of the homogeneous state of the system through the development of 
small-scale but large amplitude fluctuations. 

The parameters a and c depend on the state of the system. If the 
quench is into the region of the phase diagram where the surface free 
energy per unit area vanishes, then the homogeneous state is unstable to-
wards arbitrarily small fluctuations in composition. In this case, the decay 
of the homogeneous state occurs through the development and subsequent 
growth of infinitesimal long-wavelength fluctuations, and is termed spin-
odal decomposition. The classical spinodal is the curve on the phase 
diagram where the critical droplet radius tends to zero. In practice, it is 
only a loosely defined concept, because it is hard to give a precise meaning 
to the droplet concept, when the size of the droplet is of order the width 
of the interface at the droplet surface. 

During spinodal decomposition, initially microscopic composition fluc-
tuations grow in magnitude and develop the interconnected pattern of 
domains, sketched in figure (8.2b). It is found empirically that there is 
an intermediate asymptotic regime, where only a single time dependent 
length scale L(t) characterises the pattern. We can define an order pa-
rameter 0(r,t) = c(r,t) — co, where c(r,t) is the local concentration of 
one of the alloy components (let us say A) at time t and co is the average 
concentration (i.e. the concentration in the homogeneous state): then the 
equal-time two-point correlation function, which is proportional to the 
neutron or X-ray scattering differential cross section, has the form in real 
space15  

S(r — t) = (O(r, *k(r', t)) = F,b 	(8.79) 

In this expression, the average is taken over the sample in the case of 
experiment, and in the case of computer simulations, the average is taken 

14  For a review of the kinetics of phase transitions, see the article by J.D. Gunton, 
M. San Miguel and P.S. Sahni in Phase Transitions and Critical Phenomena, Volume 
8, edited by C. Domb and J.L. Lebowitz (Academic, New York, 1983). 
15  See, for example, the neutron scattering data on CuMn alloys of B.D. Gaulin, S. 

Spooner and Y. Morii, Phys. Rev. Lett. 59, 668 (887). 
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over repetitions of the coarsening process, starting with different initial 
conditions; the function F. is a scaling function. Experiments actually 
measure the Fourier transform, which then has the form 

:5(k, t) = L(t)d  Pip (kL(t)) . 	(8.80) 

Although ..5(k, t) is ostensibly a function of two variables, eqn. (8.80) im-
plies that when plotted appropriately, the data at different times and 
wavenumber should collapse on to a single curve, and this has indeed 
been convincingly established. The usual interpretation of these findings 
is that in the intermediate asymptotic regime, the characteristic scale 
of the spatial pattern is the size of the domains, which for long enough 
times, becomes much larger than the width of the interface separating A-
rich regions from A-depleted regions. The interface width is of order the 
equilibrium bulk correlation length E  in the system: the fact that L 
suggests that thermal fluctuations do not play an important role in the 
coarsening process during the intermediate asymptotic regime, although 
thermal fluctuations are certainly important in initiating the phase sep-
aration process, and in guaranteeing the eventual equilibration of the 
system. 

In addition to the scaling form exhibited in eqns. (8.79) and (8.80), it 
is found that the domain size grows with a power law: 

L(t),  t#, 	(8.81) 

with 0 being consistent with a value of 1/3. Although there is currently 
no complete understanding of these findings, it is anticipated that renor-
malisation group considerations will provide a framework for a successful 
theory. 

Theoretical descriptions of spinodal decomposition have two principle 
ingredients: first, it is assumed that the long wavelength behaviour of the 
system can be described by a coarse-grained free energy functional of the 
form 

F{ ik(r)} = J d d r  { 2(V02 f (ow)} , 	(8.82) 

which, in the literature, is referred to as the Cahn-Hilliard free energy 
functional. The function f(0) is the free energy per unit volume for 
a spatially homogeneous system, and in the simplest case of a quench 
through the critical point, has the usual form appropriate to Landau 
theory. Thus, for temperatures T > T c, there is only a single minimum 
of the Cahn-Hilliard free energy at ik = 0, whereas for T < Tc, there 
are two degenerate minima, now representing the two phases of the alloy 
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with different compositions, which coexist in equilibrium. The gradient 
term in (8.82) accounts for the free energy cost due to the presence of a 
concentration gradient. 

The dynamics of the phase separation process is assumed to be gov-
erned by diffusion in a chemical potential gradient. Conservation of ma-
terial implies that 

(8.83) 

j= —MN?' SOW , 	(8.84) 

and M is a phenomenological constant representing mobility. The result-
ing dynamical equation is the celebrated Cahn-Hilliard equation 

at 	oil) 
= mv2 [ _ v201 , __Of  

which is to be solved with initial conditions representing the high tem-
perature phase of the system, (0) = 0, but with fluctuations about the 
mean to initiate growth. 

As an example of the application of the use of scaling ideas to non-
equilibrium phenomena, we conclude this section by mentioning a de-
termination of the value of the dynamic exponent 0 using scaling ideas 
applied to the Cahn-Hilliard equation. The dynamic exponent is difficult 
to measure by numerical solution of the equation, because the intermedi-
ate asymptotic regime is only of appreciable duration for large systems; 
to ensure that ones data are truly in this regime, computer simulations 
of phase separation must run to very long times. This dual restriction 
of large system size and long times, plus the necessity of averaging the 
data over many repetitions, has meant that considerable effort must be 
undertaken to obtain reliable results. 

An alternative procedure16  is to consider instead the equation 

= mv2 490 	rf — 2 	c  
011, 

16  First suggested on heuristic grounds by Y. Oono and M. Bahiana, Phys. Rev. 
Lett. 61, 1109 (1988). The scaling analysis given here is due to F. Liu and N. Golden-
feld, Phys. Rev. A 39, 4805 (1989). 

ot,b 
T v j=0, 

where the current is given phenomenologically by 

(8.85) 

(8.86) 
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(b) 

Figure 8.4 (a) Sketch of local phase separation in a block copolymer melt. The 
monomer A segments of each polymer chain are represented by the full lines, whereas 
the monomer B segments of each polymer chain are represented by the dashed lines. 
(b) Morphology as in (a), but shown on a much larger length scale. The dark regions 
represent the A-rich phase, and the light regions represent the B-rich phase. 

which has been proposed to describe phase separation in block co-
polymers17  A melt of block copolymers consists of polymer chains, on 
each of which the monomer sequence is 

A-A-A-• • -A-B-B-B-• • •-B 

with equal numbers of A and B in the simplest case considered here; the 
total number of monomers on each chain is N, and it can be shown that 
in eqn. (8.86), the parameter E is proportional to N-2. Each chain has 
the character of an alloy! When the temperature is reduced below Tc, the 
A and B atoms attempt to segregate, but the phase separation is unable 
to reach completion because the A and B species are constrained to lie on 
the same polymer chain. The result is that there is local phase separation, 
with domains of A rich and B rich regions of spatial extent governed by 
the physical dimensions of the polymer chains, as sketched in figure (8.4). 

The steady state of alternating domains of A and B rich regions cor-
responds to periodic steady state solutions of the block coplymer equa-
tion (8.86). A detailed analysis shows that there is not a unique periodic 
steady state solution of the block copolymer equation, but instead, for 
every value of the parameter c lying in the range 0 < E < 1/4, there is a 
band of linearly stable periodic steady states, parameterised by the wave-
length or domain size. Thermal fluctuations will select, in equilibrium, the 

17 Y. Oono and Y. Shiwa, Mod. Phys. Lett. B 1, 49 (1987); a coarse-grained free 
energy for block copolymers was proposed by L. Leibler, Macromolecules 13, 1602 
(1980). 
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steady state which minimises the free energy of the system: numerically, 
•it is found that the domain size A varies as a power law: 

A c-0/2, c  0, 	 (8.87) 
which defines the exponent 9 characterising the equilibrium state in the 
limit of long polymer chains. The value of 9 was estimated to be 0.650 ± 
0.016. 

The interesting question now is: what is the time evolution of the lo-
cal phase separation? For early times, the A and B monomers diffuse over 
distances much smaller than the radius of gyration of the polymer chains; 
hence the constraint imposed by the chain will be inoperative, and we ex-
pect the time evolution to follow that of the phase separation of a regular 
alloy. On the other hand, when the size of the ensuing domains becomes 
comparable to the chain size, the constraint becomes effective, and the 
growth of the domains ceases, freezing in eventually to the equilibrium 
size. In this latter stage, thermal fluctuations are certainly important in 
facilitating the motion and annealing of defects in the domain structure. 
The intermediate asymptotic regime, in which the domain growth is sim-
ilar to that of phase separation in a regular alloy, may be made as large 
as desired by making the chain length large: thus we are interested in the 
regime c —►  0. These considerations suggest that the characteristic length 
scale L in the block copolymer system may be written as 

L(t, E) = r °12FL(tel), 	 (8.88) 
where y is to be determined. We expect that the time to reach equilibrium 
increases as N increases, and hence as c decreases; thus we anticipate 
that y is positive. The scaling function FL(x) must have the following 
properties. For c fixed at a non-zero value, but t 	oo, the characteristic 
length tends towards the equilibrium value; thus FL(x) 	constant as 
x 	oo. On the other hand, for large time and c 	0, the behaviour 
should be that of regular phase separation, and L(t) N  t0. The familiar 
scaling argument then implies that 

F(x) ,  x8121, as x --+ 0 	 (8.89) 
to cancel out the c prefactor in L(t, c). Hence, we conclude that L N t°12  
and thus 

9 = 270. 	 (8.90) 
Note that 9 is an exponent describing the equilibrium state, whereas 

describes the approach to equilibrium. Numerical data are entirely 
consistent with the scaling law (8.88) for L(t, E) with 7 = 1.0. Thus 
the numerical determination of 9 implies that the dynamic exponent 

= 0.325 ± 0.008, which is consistent with experimental and numeri-
cal data. 
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8.5 SUMMARY 

The scaling hypothesis is a valuable way to correlate data for sys-
tems near the critical point, and for some non-equilibrium systems as 
they approach equilibrium. These are empirical statements. In the follow-
ing chapter, we will discuss how the renormalisation group accounts for 
the success of scaling ideas, for systems in equilibrium. Certain driven 
non-equilibrium systems, such as models of atomic deposition, exhibit a 
formal analogy to critical dynamics, and this has proven to be useful in 
analysing these systems. Finally, there are tantalising suggestions that 
some systems approaching equilibrium may also be usefully described by 
renormalisation group ideas. Further discussion of this topic is to be found 
in chapter 10. 

APPENDIX 8 - THE FOKKER-PLANCK EQUATION 

In this appendix, we sketch the derivation of the Fokker-Planck equa-
tion, starting from the Langevin equation (8.41). 

We begin with the definition of the probability distribution for the 
order parameter n(r), and differentiate with respect to time: 

C 
_b 

 —f dde 1., ( 11.  fiEn —TO C 

= — i eV -6-71-1--1  ( [—I1 6* + ((e, tdo[n —TO 
c 

= f dd  xi .577.67,[rP„  3  a ,- 3  - (( b0-17))ci 	(A8.1) 

The evaluation of MO — Ti))c  is accomplished by noting the general result 

(F{C}()c  = ID( (CF) Pc 

=D I OF D( V Pc  

= D (. bF) c 	 (A8.2) 

OtPn({n(r)},t) = ( Otb [n(r) — TO , t, {MN 

dd 
— J r, ( Thlet eigr'ö , 0 5 [77(r) —11(r,t, MO 
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where we integrated by parts and used the expression (8.42) for the proba-
bility distribution. These operations can be verified, if desired, by writing 
the functional integral as a multiple integral. In the present case, 

(C(r, t)(5(77 — Ti))c  = D (15c(r,, 	0.5(n — ii))c  

„ 	  = D 	dr 	bc(r,,  t ) ef(ril, t) 
on  _17)\ 

C 
, 	o 	I eige,t) 	1.7)\ ( A8.3)  

= —D f dr' on, 	 t) bc(e,t) 	/C 

The quantity being averaged in the above expression is essentially a re- 
sponse function, and can be evaluated from the formal solution to the 
Langevin equation (8.41): 

6L t) = Ti(r, 0) — der-, (71(r, ti)) -I- 	de C(r, e). 	(A8.4) 
o 	or/ 

Differentiating with respect to C(r', t") and noting that causality implies 
that n(r, t) only depends on C(r, t') when t > t', we find that 

(r'  t) 	 t 	15 	a 

t5((e, t")
r  on (ri(r,e))} + 9(t — t")]. — 	r') [— de 	 

t" 
(A8.5) 

In eqn. (A8.3), we require the above quantity evaluated at t = t". The 
value of the Heaviside function 9(t) at zero is in this case 8(0) = 1/2, as can 
be seen by repeating the above derivation with the two-point correlation 
function of C being proportional not to 6(t — t'), but to a sharply-peaked 
even function of (t — t'). Thus 

brgr", t) 
— 16(r r'). 

45((r , t) 	2 
(A8.6) 

Substituting into eqn. (A8.3), and collecting results back through eqn. 
(A8.1), we finally obtain 

D of) 151 	-=-1-1 ot P,7 ({70)},t) = dd 	[r 	p r 	n 2  .5709  , 

which is our desired result. 

(A8.7) 
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CHAPTER 9 

The Renormalisation Group 

The preceding chapters have shown that mean field theory does not accu-
rately predict critical exponents, and that attempts to improve mean field 
theory by perturbation theory fail, due to the presence of divergences as 
t 	0. We also saw that dimensional considerations imply that the exis-
tence of anomalous dimensions can only be accounted for by invoking the 
presence of a microscopic length scale, such as the lattice spacing, even 
when the correlation length is very large. By sidestepping these difficul-
ties, the previous chapter showed that experimental data can be correlated 
by assuming the existence of scaling laws, even though it was recognised 
that we could justify neither the scaling hypothesis, nor the existence of 
anomalous dimensions. 

In this chapter, we will explain how the scaling hypothesis follows from 
the presence of a diverging correlation length. The basic argument origi-
nates from the insight of L.P. Kadanoff that a diverging correlation length 
implies that there is a relationship between the coupling constants of an 
effective Hamiltonian and the length scale over which the order parame-
ter is definedl Kadanoff's ingenious argument is correct in spirit, but not 
quite right in detail; as we will see, the relationship between coupling con-
stants defined at different length scales is more complicated than assumed. 

I  L.P. Kadanoff, Physics 2, 263 (1966). 
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Furthermore, Kadanoff's argument does not enable the critical exponents 
to be calculated. K.G. Wilson elaborated and completed Kadanoff's ar-
gument, showing how the relationship between coupling constants at dif-
ferent length scales could be explicitly computed, at least approximately; 
Wilson's theory — the renormalisation group (RG) — is thus capa-
ble of estimating the critical exponents? The RG also provides a natural 
framework in which to understand universality. 

9.1 BLOCK SPINS 

We begin by describing Kadanoffs basic insight, and showing how it 
leads to the scaling laws postulated by Widom. We will present the argu-
ment in two parts, the first being the thermodynamic scaling laws, and 
the second being the scaling laws for the two-point correlation function. 

9.1.1 Thermodynamics 
Consider a system 11 of spins on a d-dimensional hypercubic lattice, 

with spacing a, and Hamiltonian Ho given by 

= ES=S;- /3H   ss 

—KESiSj—hESi 

with 

K f3J; 
h = )311. 

Let f,(t, h) be the singular part of the free energy per spin near Tc. Since 
spins are correlated on lengths of order f(T), spins on a length scale La, 
with t > 1, act in some sense as a 'single unit' as long as 

a < la «1;(T). 	 (9.3) 

Thus, we could imagine a coarse-graining procedure, of the form that we 
invoked in our discussion of Landau theory, in which we replace the spins 

R

(9.1) 

(9.2) 
2  K.G. Wilson, Phys. Rev. B 4, 3174, 3184 (1971); K.G. Wilson and J. Kogut, Phys. 
ep. C 12, 75 (1974). 
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within a block of side la by a single spin, a block spin, which actually 
contains t spins. The total number of blocks, and hence of block spins, 
is then Ni-d. Now we will examine the consequences of such a coarse-
graining procedure, which we will refer to for the moment as a block 
spin transformation. 

We define the block spin S1 in block I by 

1 1 

	

iEI 
id 	see  

where the average magnetisation of the block I is 

1 
rnt 	E(si)

ieI 

With this normalisation, the block spins Si have the same magnitude as 
the original spins: 

(Si) = ±1. 	 (9.6) 

Now we make our first significant assumption: 

Assumption 1: 
Since the original spins interact only with nearest neighbor spins and with 
the external field, we will make the courageous assumption that the block 
spins also interact only with nearest neighbor block spins and an effective 
external field. 

Our assumption implies that we should define new coupling constants 
between the block spins and an effective external field which interacts 
with the block spins. We will denotes these respectively as Kt and ht, with 
the subscript f reminding us that in principle, these coupling constants 
depend upon the definition of the block spins, and thence depend upon 
The coupling constants of the original Hamiltonian correspond to = 1: 
thus, we have the boundary condition 

K1  = K; h1  = h. 	 (9.7) 

According to assumption 1, the effective Hamiltonian H1 for the block 
spins is given by 

Nt-d 	N1-d 
= Kt  E sis,+ he E 

(IJ) 	 1=1 
(9.8) 

(9.4) 

(9.5) 
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which, by construction, is of the same form as the original Hamiltonian 
(9.1). The system described by He is identical to that described by .11‘), 
except that the lattice spacing between the block spins is la, whereas the 
spacing between the original spins is a; the former system also has fewer 
spins. Thus, for the block spins, the correlation length measured in units 
of the spacing la of the block spins, et , is smaller than the correlation 
length ei  of the initial system, measured in units of the spacing a between 
the original spins. This follows, because the actual physical value of the 
correlation length e, as measured in A, for example, is of course unchanged 
by our grouping of the spins into block spins. Thus 

e = et(ea) = 6a, 	 (9.9) 

and hence 

Et = I 	 (9.10) 

Since et < el, the system with Hamiltonian He must be further from 
criticality than the original system! Thus, we conclude that it is at a new 
effective reduced temperature, tt. 

Similarly, the magnetic field h has been rescaled to an effective field 
he, when measured in the appropriate units: 

h 	Si SY. hint  id  E SI  a: ht E SI 
	

(9.11) 

which implies a relationship between the average magnetisation of a block 
and the effective field: 

ht  = afield . 	 (9.12) 

The effective Hamiltonian He is of the same form as the original Hamil-
tonian (9.1), and thus the functional form of the free energy of the block 
spin system will be of the same form as that of the original system, albeit 
with ti and ht instead of t and h. In terms of the free energies per spin or 
block spin, 

Nrd  fs(te,he)= N fs(t,h). 	(9.13) 

Hence, we find that 

	

f s(tt  , ht ) = id 	, h). 	 (9.14) 

Although this equation describes how the free energy per spin transforms 
under a block spin transformation, we still do not have any information 
on how the reduced temperature and external field have changed during 
the transformation. Thus, we make 
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Assumption 2: 
Since, we seek to understand the power-law and scaling behaviour in the 
critical region, we assume that 

tt = tee Yt > 0; 
	

(9.15) 

hi = heh Yh > 0. 	 (9.16) 

The exponents yt  and yh  are assumed to be positive, but we cannot 
say anything more about them at this stage. We will see below that in the 
full RG theory, the circumstances under which assumption 2 is correct are 
identified, and then it is possible to perform the block spin transforma-
tion approximately, and hence yt  and yh  can be estimated. For now, we 
substitute into eqn. (9.13) to obtain the central result of this section: 

Li(t,h)= 	fs(tet , hivh). 	 (9.17) 

Note that we have not specified P, and thus we are at liberty to choose t 
as we please. Thus, we will choose 

	

111-1,w 	 (9.18) 

i.e. 

	

twit' = 1. 	 (9.19) 

With this choice 

h(t,h)= [Whit f(1,h121-"1110. 	 (9.20) 

Let us define 
A  _myh 	 (9.21) 

yt 

and 
d 

2 - a E 	 (9.22) 
Yt 

for reasons to become obvious. Then eqn. (9.20) becomes 

fs(t,h)= It12-aFf(h/Itl°) 	 (9.23) 

with 
Ff(x) = f,(1,x) 	 (9.24) 

a function which depends only on x. This is just the basic starting point 
of the static scaling hypothesis, eqn. (8.24). 



r2(d—) yh, FG 	,hrlihhit) G(r,t,h) = 	
1 
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9.1.2 Correlation Functions 

Now consider the correlation function for the block spin Hamiltonian 

G(rt,te) = (SISJ) - (S1)(S.7), 	(9.25) 

where re is the displacement between the centres of blocks I and J in 
units of at; if r denotes the displacement between the centres of blocks 
I and J in units of a, then ri= r11. In order that the notion of a block 
spin correlation function be well-defined, we require that the separation 
between the blocks be much larger than the block size itself: thus, we are 
concerned only with the long-wavelength limit r >> a. How is G(rt,t1) 
related to G(r,t)? Using the definition of SI, eqn. (9.4) and eqn. (9.10), 
the average magnetisation in a block becomes 

wit= htt-d ih  = iyh-d. 	(9.26) 

Thus the correlation function transforms as 

1  
G(re,t1) = 12(Yh-d) .12d E E [vim - (Si) (Si)] 	(9.27) 

ief jeJ 
1 	1 

= 12(d-yh )G(r,  t). 	 (9.29) 

Including the dependence on h, we have 

G (.11 tivt him) = t2(d-yoG(r,t,h). 	(9.30) 

Again, we can choose Q as we please, and so we set Q = t-l1 t as before, 
to obtain 

G(r, t, h) = got- YOlYt G(rtiht , ht —YhlYt,1). 	(9.31) 

The prefactor t201—YhVYt is unfamiliar, but we can easily re-arrange this 
expression by writing 

G(rtlivt,h 	(rtilYt)-2(d-")  FG (rtiht,ht-Yhht) , (9.32) 

which defines the scaling function FG. Substituting into eqn. (9.31), we 
obtain our final result 

(9.33) 

i2(yh —d) Q2d td  • id  • RSA) — ( Si) (SA (9.28) 
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This is just the form assumed by scaling, eqn. (8.30). Comparing with the 
expectations of the scaling hypothesis we can read off 

v = — 1 	 (9.34) 
Yt 

2(d — yh) = d — 2 -I- 77 	(9.35) 

A = YhiYt• 	 (9.36) 
We see that, in fact, there are only two independent critical components, 
corresponding to the two variables t, h. 

9.1.3 Discussion 
Kadanoff's block spin argument successfully motivates the functional 

form of the scaling relations; but it gives neither the exponents N and 
yh, nor the scaling functions themselves. It does not address the issue of 
universality either, and as we have presented it, applies only to the spin 
half Ising model, although it is clear that a generalisation to other systems 
is possible. The most crucial step is the assumption that the block spin 
Hamiltonian is of the same form as the original Hamiltonian. This cannot 
possibly be correct, as the following counter-example shows. 

Suppose that in the original Hamiltonian the spins did not interact at 
all with their nearest neighbours, but instead interacted only with the next 
nearest neighbours. After coarse-graining, it would be ludicrous to assume 
that the block spins also interacted only with next nearest neighbours. 
Each block spin contains many original spins, and it is difficult to see 
why the block spins would not interact with their nearest neighbours. This 
plausibility argument not only shows that the block spin Hamiltonian is 
not necessarily the same as the original Hamiltonian, but also provides a 
precursor to the explanation of universality. The block spin Hamiltonian 
should be more or less the same, regardless of whether or not the original 
Hamiltonian involved nearest neighbour interactions only or next nearest 
neighbour interactions only. 

The conceptual importance of the argument is that it suggests how 
fruitful it might be to get away from the conventional statistical mechani-
cal approach of treating all the degrees of freedom at once. This approach 
was, of course, rooted in the history of statistical mechanics, where the 
importance of exact calculations of the partition function was emphasised. 
In progressively thinning out or coarse-graining the degrees of freedom, 
Kadanoff's argument focuses on the fact the coupling constants vary with 
a change of length scale. The question of precisely how the coupling con-
stants vary, under repeated elimination of short length scales is the crucial 
one, and is addressed by the work of Wilson, to which we now turn. 
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9.2 BASIC IDEAS OF THE RENORMALISATION GROUP 

The renormalization group (RG) consists of two principal steps, which 
address two distinct issues. The first step is a concrete realisation of the 
coarse-graining transformation used in the preceding section, and we will 
examine carefully the properties of block spin transformations. The second 
step is to identify the origin of singular behaviour. The crucial idea is this: 
after a block spin transformation has been performed, the block spins are 
separated by a distance /a. If we now rescale lengths so that in the new 
units, the block spins are separated by the original distance a between 
the microscopic spins, then to all intents and purposes, the system looks 
like the original system, in terms of the degrees of freedom, but with a 
different Hamiltonian. Repeating this sequence of steps yields a sequence 
of Hamiltonians, each describing statistical mechanical systems further 
and further away from criticality, by the argument in the previous section. 
We will see that while the construction of a block spin transformation is 
perfectly analytic, non-analyticities can arise after an infinite number of 
repetitions, in which all the degrees of freedom in the thermodynamic 
limit have been integrated. 

We consider a system described by the Hamiltonian. 

it E.--_--  — 131111 = EKnOn{S} 	 (9.37) 

where Kn  are the coupling constants, and On{S} are the local operators 
which are functionals of the degrees of freedom {S}. We will, from this 
point on, use the term Hamiltonian to denote both H and it; the latter 
quantity is the more convenient, for present purposes. 

9.2.1 Properties of Renormalisation Group Transformations 

Let us now consider how it changes under a transformation which 
coarse-grains the short wavelength degrees of freedom, leaving an effective 
Hamiltonian for the long wavelength degrees of freedom. Conceptually, 
this means that we group together degrees of freedom in a block of linear 
dimension la, although in practice there are more sophisticated ways of 
achieving this. The block spin transformation in the spin half Ising model 
was an example of such a transformation, but now we contemplate a 
corresponding procedure for a general Hamiltonian it. We will call such 
a transformation a renormalisation group transformation 14, and 
we will see explicit examples later. The term `renormalisation group' has 
historical origins, which will become dearer in the following chapter: all 



9.2 	Basic Ideas of the Renormalisation Group 	 237 

it means, however, is the change or redefinition of the coupling constants 
under a change of scale, and a recaling of the degrees of freedom. 

Suppose that under Re, the set of coupling constants K [K] become 

[K'] E Re[K] I > 1. 	(9.38) 

As before, Re describes how the coupling constants change as the length 
scale, over which the local operators are defined, is varied. Equation. (9.38) 
is sometimes referred to as a recursion relation. In general, RI is a very 
complicated, non-linear transformation. Since t > 1, there is no inverse 
transformation. As we discussed at the end of section 9.1.3, we expect 
that two different forms of Ising model Hamiltonian can give rise to very 
similar block spin Hamiltonians, and we anticipate that this is a very 
general feature. 

The transformations Rt  for different t > 1 do indeed form a semi-
group: two successive transformations with t = ti and t = £2 should be 
equivalent to a combined scale change of £1t2: 

[K'] = Rey [K] 
	

(9.39) 

[Ka] = Res  [K'] 
	

(9.40) 
= 142  • Re, [K] 
	

(9.41) 

and thus 
Rues [K] = Re, • Rte  [K]. 	(9.42) 

How do we calculate Re? There are many different ways, and indeed, there 
is no unique RG transformation; many different RG transformations may 
be constructed for a given problem. All involve a coarse-graining of the 
degrees of freedom, which we now describe formally here. The discussion 
here is related to that of section 5.6.2. 

We begin by writing down the partition function 

	

ZAK] = Tr en, 	 (9.43) 

and defining a quantity g, related to the free energy per degree of freedom: 

g[K] 1-1- log ZN[K]. 	 (9.44) 

An RG transformation reduces the number of degrees of freedom by a 
factor 1d, leaving N' = N/td  degrees of freedom, described by 'block 
variables' {SD, I = 1 ... , with an effective Hamiltonian 9l'N'• This is 
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accomplished by making a partial trace over the degrees of freedom {Si} 
keeping the block degrees of freedom {S'i } fixed: 

eniN fEKIsirl = Tr  fts.lewN{ficbsi} 	 (9A5) 

= Tr fsjP(Si,SpenNilicbsi } 	(9.46) 

where P(Si, Sp is a projection operator which allows the trace in 
eqn. (9.46) to be unrestricted. The projection operator P(Si, Si-) is con-
structed so that the coarse-grained degrees of freedom SI have the same 
range of values as Si. 
Example: 

For Ising spins on a square lattice, we could define the following RG 
transformation using blocks with linear dimension (2t + 1)a, so that the 
number of degrees of freedom within each block is odd. Then, we let 

= sign (E Si = ±1. 	 (9.47) 

The associated projection operator is 

P(Si, 	= H S (9'1 — sign  [E Si 	 (9.48) 

Clearly, there are many other ways of defining a RG transformation with 
the property that SI = ±1. 

The projection operator P(Si, Sp must satisfy the following three 
requirements: 

(i) P(Si, 	0; (9.49) 
(ii) P(51, SI) reflects the symmetries of the system; (9.50) 

(iii) E P(Si, 	= 1. (9.51) 
{.541} 

Condition (i) guarantees that exp(liN,{[10,5/}) > 0, so that we can 
safely identify 1(N'  with the effective Hamiltonian for the degrees of free-
domS'I. Condition (ii) implies that WA!, possesses the symmetries exhib- 
ited by the original Hamiltonian 	For example, if nN has the form 

71N = NK0 h E + E sis; + K2 E sisisk + ... (9.52) 
i 	ij 	 ijk 
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where each multinomial in Si allowed by symmetry is included in with 
coupling constants that are in general non-zero, then the transformed or 
renormalised Hamiltonian 

?{'N  ,= 	Si/  + 	+ E soist,s,K  + 	(9.53) 
I 	IJ 	IJK 

has the same form, but with transformed, or renormalised coupling con-
stant0 If a certain coupling constant Km  happened to be zero in 7-1, then 
in general, 4, will be non-zero. A spin model with infinite range coupling 
between pairs of spins, but no three spin couplings is indeed of the form of 
eqn. (9.52) with K2  = 0, but after transformation, three spin interactions 
may be present with .1q 0 0. Condition (iii) guarantees that 

ZAK'] s.--: Tr {,91}eniNransil 

= Tr {,9,1}Tr {si}P(Si,Spe7iNfEnsil 
= Tr  IsslenNwcbsi) 1  

= ZN[K]. 

Thus, the partition function is invariant under a RG transformation. What 
about the 'free energy' g? 

id 1 	
idN —log ZN[K] = 	log ZNI[r] 	(9.58) 

1 
' = 	N log ZNS[K'], 	(9.59) 

and thus 
g[K] = 	 (9.60) 

The general formal framework above encapsulates the spirit of the 
Kadanoff block spin transformation, but differs from it in that at the 
outset we allow for the possibility that new local operators are generated 
during the RG transformation. So far, the formalism is exact, but not 
obviously useful. The only virtue of the presentation that emerges so 
far is that although the calculation of the [r] as functions of [K] is 

3  Note that we have explicitly kept track of the spin independent term Ko in the 
Hamiltonian. The recursion relations for Kn  (n > 1) do not involve Ko, but this 
term must be kept to compute correctly the free energy. Thus, Ko is often neglected in 
discussions, because it does not affect critical exponents. See exercise 9-3 for an explicit 
example, and the discussion by D.R. Nelson, Phys. Rev. B 11, 3504 (1975). 

(9.54) 

(9.55) 

(9.56) 
(9.57) 
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Figure 9.1 (a) The potential V(x). The arrows on the x-axis indicate the direction 
of motion of the particle as a function of x. (b) Position of the particle after time t as 
a function of initial position, for finite and infinite times. 

in general very difficult, the functions should be analytic, because only 
a finite number of degrees of freedom have been integrated over in the 
RG transformation. The usefulness of the RG approach derives from the 
fact that it is thus considerably easier to approximate the [K'] than the 
partition function itself. This remark brings us now to the second part of 
the RG technique: the origin of singular behaviour. 

9.2.2 The Origin of Singular Behaviour 

An infinite number of iterations of the RG transformations is re-
quired in order to eliminate all the degrees of freedom of a thermody-
namic system in the thermodynamic limit N oo. In this way, singular 
behavior can occur. 

To see this, consider the following simple example of how singular 
behavior can arise from an analytic transformation. A particle moving in 
a one-dimensional potential V(x) is subject to damping sufficiently strong 
that inertia can be neglected. The particle's position X(t) is determined 
by the equation 

dX 
—11x)' (9.61) 

where the units have been chosen so that the coefficient of friction is unity. 
Suppose that V(x) is as drawn in figure (9.1), and the particle is released 
from any point x < xc. The particle will roll to xA and stop. If the 
particle is released from any point x > xc, it rolls to xB and stops. Thus, 
the final position of the particle is a discontinuous function of the initial 
position, xo. Note that X(t, xo), the position at time t after release at xo, 
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is a continuous function of xo  for finite values of t, but a discontinuous 
function of xo when t = oo. The potential V(x) is perfectly analytic, so 
the singular behavior is not due to pathologies of V(x). Instead, the origin 
of the singular behavior is the amplification of the initial condition due 
to the infinite time limit. 

The points xA, xB and xc are fixed points of eqn. (9.61). If the 
particle is at a fixed point at some time t', then it remains there for 
t > t'. We also see that fixed points come in two varieties, repulsive and 
attractive, with the following properties respectively. If the particle starts 
of near the fixed point at xc, it will always end up either at x A  or at xB, 
but never at xc. On the other hand, if the particle starts off near either 
xA or xB, it will end up at that fixed point. 

The set of initial conditions {xo} which flows to a given fixed point is 
called the basin of attraction of that fixed point. In the simple example 
here, the basin of attraction of xB is x > xc, whilst the basin of attraction 
of xA is x < xc. The basin of attraction of xc is x = xc. 

This dynamical system example suggests that singular behavior can 
arise after an infinite number of IW transformations. The analogue with 
a dynamical system is quite faithful: after n RG iterations, the coarse-
graining length scale is in, and the system is described by the coupling 
constants Kr )  , 41), .... As n varies, the system may be thought of as 
represented by a point moving in a space whose axes are the coupling con-
stants Ko, Kl , .... On iterating the RG transformation, a given system 
represented by its initial set of coupling constants, traces out a trajectory 
in coupling constant space. The set of all such trajectories, generated by 
different initial sets of coupling constants generates a renormalisation 
group flow in coupling constant space. Although it is possible, in princi-
ple, for the trajectory of the representative point to trace out limit cycles, 
strange attractors, etc., in practice, it is almost always found that the 
trajectory becomes attracted to fixed points As we will see, scaling be-
haviour is invariably associated with the dynamics near a particular sort 
of fixed point, and the nature of the fixed points and the flows of the repre-
sentative point in coupling constant space provide important information, 
allowing the phase diagram of the system to be determined. 

4  A discussion of these possibilities is given by D.J. Wallace and R.K.P. Zia, Ann. 
Phys. (N.Y.) 92,142 (1975). Exotic trajectories have been reported in some calculations 
on disordered systems: see A. Weinrib and B.I. Halperin, Phys. Rev. B 27, 413 (1983), 
and references therein. 
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9.3 FIXED POINTS 

The crucial ingredient of the RG method is the recognition of the 
importance and physical significance of fixed points of the RG transfor-
mation. In this section, we will develop these ideas in general terms. 

9.3.1 Physical Significance of Fixed Points 

Let us suppose that we know the RG transformation Re[K]. Then the 
fixed point of the RG transformation is a point [K*] in coupling constant 
space satisfying 

[K*]= Ri[K1. 	 (9.62) 

Now, under the RG transformation Re, length scales are reduced by a 
factor t, as we have discussed. For any particular values of the coupling 
constants, we can compute the correlation length , which transforms 
under Re according to the rule 

f[r] = 	 (9.63) 

indicating that the system moves further from criticality after a RG trans-
formation has been performed. At a fixed point, 

e[K1= E[K111, 	 (9.64) 

which implies that e[K1 can only be zero or infinity. 
We will refer to a fixed point with = co as a critical fixed point, 

and a fixed point with = 0 as a "trivial" fixed point. In general, a RG 
transformation will have several fixed points. Each fixed point has its own 
basin of attraction or domain: all points in coupling constant space which 
lie within the basin of attraction of a given fixed point flow towards and 
ultimately reach the fixed point, after an infinite number of iterations of 
Rt. 

Theorem: 
All points in the basin of attraction of a critical fixed point have infi-

nite correlation length. 

Proof: 
Suppose that we start with a physical system represented by the point 

in coupling constant space [KJ. After n iterations of the RG transforma-
tion Re, the system is now at a representative point denoted by [K(11) ]. 
Using eqn. (9.63), we have the sequence of identities 

e[K] = g[K(1)] = t2e[K(2)]  = 	= tive[K(N)] 	(9.65) 
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for any N. Taking the limit N --+ oo, the right hand side of eqn. (9.65) 
becomes infinity if [./(*]= co; i.e., if [K] was in the basin of attraction 
of a critical fixed point. 

Q.E.D. 

This set of points — the basin of attraction of a critical fixed point — is 
often called the critical manifold. The fact that all points on the critical 
manifold flow towards the same fixed point is the basic mechanism for 
universality, but is by no means the complete explanation. Universality, 
after all, involves behaviour exhibited by systems close to, but not at 
the critical point, and we have so far not said anything about this case. 
To complete our account, we will need to examine the behaviour off the 
critical manifold. 

We will shortly see that the critical fixed points describe the singular 
critical behaviour, whereas the trivial fixed points describe the bulk phases 
of the system. Knowledge of the location and nature of the fixed points of 
a RG transformation thus enables the phase diagram to be determined, 
whilst the behaviour of the RG flows near a critical fixed point determines 
the critical exponents. 

Although we have implicitly assumed that the fixed points are isolated 
points, this is not necessarily the case. It is possible to have lines and 
surfaces of fixed points, and later, we will classify fixed points according 
to their codimension. 

9.3.2 Local Behavior of RG Flows Near a Fixed Point 
What can we learn from the behaviour of the flows near a fixed point? 

Let 
Kn  = 	 (9.66) 

so that the starting Hamiltonian is close to the fixed point Hamilto-
nian i.e. the Hamiltonian with the coupling constants equal to their fixed 
point values: If = li[K1 = W. Let 7-t = 	51-t. Now perform a RG 
transformation: [K'] = Ri[K]. Then 

Kn = K„' 	+ 451q, 	(9.67) 

with 54 given by Taylor's theorem: 

IC:,{1q-1-45Ki,K2-FOK2,• • .} = Ki*t+ 	
OK„' 	

• 5IC,„-F0 PK)2) , 
rn u.km I=K4, 

(9.68) 
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so that 
SK:„ = >2M„„,5IC„„ 	(9.69) 

where 

Mnm 
=Kn  

re 	 (9.70) 
— m K=K" 

is the linearised RG transformation in the vicinity of the fixed point 
K*. The matrix M is real, but in general it is not symmetric, and we shall 
have to distinguish between left eigenvectors and right eigenvectors. 
Consequently, in general M is not diagonalisable, and the eigenvalues 
are not necessarily real. In practice, however, the situation is often more 
pleasant, and M is diagonalisable with real eigenvalues5. We shall develop 
the basic ideas of RG assuming that M is symmetric, for simplicity. At 
the end, we shall mention the minor modifications that arise for non-
symmetric matrices. 

Let us now study the RG flows near the fixed point, using the lin-
earised RG transformation M&), where the superscript B denotes the scale 
factor involved in the RG transformation Re. We denote the eigenvalues 
and eigenvectors by A(er)  and 47)  respectively, where a labels the eigen-
values and the subscript n labels the component of the vector e. Using 
Einstein summation convention, we have 

M44,4 	= A(`')  ef,c). 	(9.71) 

The semi-group property of eqn. (9.42) implies that 

m(i)m(e) = m(te) 

and thus 
At A(;) 
	

(9.73) 

One way to solve the functional equation (9.73) is to note that setting 
1' = 1 gives Al(r)  = 1. Hence, differentiating eqn. (9.73) with respect to 

£', setting £' = 1, and solving the resultant differential equation for Ar)  
gives 

(9.74) 

5  Certain RG calculations in disordered systems have found complex eigenvalues 
which may correspond to non-trivial flows. See footnote 4. 

(9.72) 

A()  — iv° ) 	' 
with yo  being a number to be determined, but independent of C. 
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How does [SIC] transform under M? We expand [SK] in terms of the 
eigenvectors of M, and then see how the components of [SK] grow or 
shrink in the eigen-directions. 

	

SK = E a(a)e(a), 	 (9.75) 
a 

writing [K] as a vector K = 	K2, . ..). The coefficients WO are ob- 
tained from the assumed orthonormality of the eigenvectors: 

= e(a)  • SK. 	 (9.76) 

Note that the orthonormality property does not generally hold when the 
matrix M is not symmetric. 

When we apply the linearised RG transformation M, we find that 

SK' = MSK 
	

(9.77) 

= M E a(a)e(a) 
	

(9.78) 
a 

= E a(a)A(a)e(u) 	a(coie(-), 	(9.79) 
a 	a 

thus defining a(a)' as the projection of 6K' in the direction e(c) . This equa-
tion is very important. It tells us that some components of SK grow under 
M(t) whilst others shrink. If we order the eigenvalues by their absolute 
value, 

(Ail 	1A21 	1A31 • • • 	 (9.80) 

then we can distinguish three cases: 

(1) IA(a)1 > 1 i.e. ya > 0, which implies that WO' grows as t increases. 
(2) IA(a)I < 1 i.e. ya < 0, which implies that a(")' shrinks as in-

creases. 
(3) IA(a)1 = 1 i.e. ya = 0, which implies that du)' does not change as 

increases. 

The significance of these three cases is that after many iterations of M(t), 
only components of SK along directions e(a) for which case (i) holds, will 
be important. The projections of SK along the other directions will either 
shrink or stay fixed at some finite value. The three cases above are given 
the following terminology: 
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(1) —> relevant eigenvalues/directions/eigenvectors. 
(2) --+ irrelevant eigenvalues/directions/eigenvectors. 
(3) marginal eigenvalues/directions/eigenvectors. 

The significance of these distinctions is that if we start at K near K*, but 
not on the critical manifold then the flows away from K* i.e. in directions 
out of the critical manifold in the vicinity of K*, are associated with 
relevant eigenvalues. The irrelevant eigenvalues correspond to directions of 
flow into the fixed point. The eigenvectors corresponding to the irrelevant 
eigenvalues span the critical manifold. 

The marginal eigenvalues turn out to be associated with logarithmic 
corrections to scaling, and are important at the upper and lower crit-
ical dimensions. The number of relevant eigenvalues must thus be the 
codimension c of the critical manifold, i.e., the difference between the 
dimensionalities of the coupling constant space and the critical manifold. 

It is very important to remember that the terms relevant, irrelevant 
and marginal are always to be specified with respect to a particular fixed 
point. A particular term in the Hamiltonian may be relevant at one fixed 
point, but not at another. 

9.3.3 Global Properties of RG Flows 

We will soon see that the local behaviour near critical fixed points 
determines the critical behaviour. The global behaviour of RG flows, how-
ever, determines the phase diagram of the system. The basic idea is sim-
ple: starting from any point in coupling constant space (i.e. in the phase 
diagram), iterate the RG transformation and identify the fixed point to 
which the system flows. The state of the system described by this fixed 
point represents the phase at the original point in the phase diagram. We 
shall see an explicit example of this later; however, it is useful first to 
classify the types of fixed points, and to elaborate on the notion of uni-
versality. In this subsection, we will describe the global properties of flows 
in a qualitative fashion. The specific phenomena that we point out will 
be illustrated later when we explicitly perform a renormalisation group 
calculation. The purpose of this subsection is to provide the reader with 
some perspective, before embarking on technical details. 

Table (9.1) shows a classification of fixed points by their codimen-
sion. Those with codimension 0 have no relevant directions, and therefore 
trajectories only flow into them, giving rise to the name sink. The sinks 
correspond to stable bulk phases, and the nature of the coupling con-
stants at the sink characterise the phase. For example, a simple three 
dimensional Ising magnet with nearest neighbour ferromagnetic coupling 
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Table 9.1 CLASSIFICATION OF FIXED POINTS 

Codimension Value of Type of Fixed Point Physical Domain 

0 0 Sink Bulk phase 
1 0 Discontinuity FP Plane of coexistence 
1 0 Continuity FP Bulk phase 
2 0 Triple point Triple Point 
2 00 Critical FP Critical manifold 

Greater than 2 00 Multicritical point Multicritical point 
Greater than 2 0 Multiple coexistence FP Multiple coexistence 

in an external field H has sinks at H = ±oo, T = 0, corresponding to 
the fact that in a positive (negative) external field, there is a net positive 
(negative) magnetisation for all temperatures. Starting at any point in 
the phase diagram (H,T), successive RG iterations will drive the system 
to the sink corresponding to the appropriate sign of H. We will see an 
example of this later. 

There are two sorts of fixed point with codimension one: discontinu-
ity and continuity fixed points. The former correspond to points on a 
phase boundary and describe a first order phase transition where an or-
der parameter exhibits discontinuous behaviours An example is the line 
H = 0, T < T, in the ferromagnet: all points on that line flow to a dis-
continuity fixed point at zero temperature and field. A continuity fixed 
point represents a phase of the system, but nothing interesting happens 
in its vicinity. An example is the paramagnetic fixed point at H = 0, 
T = oo, which attracts points on the line H = 0, T > T. Both of these 
codimension one fixed points are unstable towards the sinks: an infinites-
imal external field will cause the RG flows to approach the sinks, not 
the codimension one fixed points. In section 9.6, we calculate these flows 
explicitly. 

Fixed points with codimension greater than or equal to two describe 
either points of multiple phase coexistence or multicritical points, de-
pending upon the value of the correlation length e. The simplest case, 
codimension two, corresponds to either a triple point (e = 0) or a critical 
point (e = oo). In each case, a useful way to interpret the presence of two 

6  The interpretation of renormalisation group transformations in the vicinity of a 
first order transition is somewhat delicate, and the picture presented here is somewhat 
simplified. For a careful discussion see the article by A.C.D. van Enter, R. Fernindez 
and A.D. Sokal, Phys. Rev. Lett. 66, 3253 (1991) and references therein. 
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(a) 
	

(b) 

Figure 9.2 Renormalisation group flows near a critical fixed point: (a) View of flows 
on the critical manifold. (b) View of flows off the critical manifold. 

relevant directions is that these represent the two variables that must be 
tuned in order to place the system at the appropriate point. For example, 
in order to hold a magnetic system at the critical point, it is necessary to 
adjust the external field to be zero and the temperature to be the critical 
temperature. 

What happens to a system close to criticality? As depicted in figure 
(9.2), the trajectories of systems on the critical manifold remain on the 
manifold and flow to the fixed point. Trajectories which start slightly 
off the critical manifold initially flow towards the critical fixed point (we 
expect this to be the case because the only singularities of the flow field are 
the fixed points themselves), but ultimately are repelled from the critical 
manifold, because the critical fixed point has two unstable directions i.e. 
the two relevant directions. The fact that it is the same eigenvalues which 
drive all slightly off-critical systems away from the fixed point is the origin 
of universality. Thus, the initial values of the coupling constants do not 
determine the critical behavior. Only the flow behavior near the fixed 
point controls the critical behavior. 

To illustrate this, consider the flow diagram for an Ising model with 
nearest neighbour coupling constant K1  = Jl  I kBT, next nearest neigh-
bour coupling constant K2  = J2/kBT in an external field h = H ICBT: 

11=K1 E sis;+K2 E SiS h Esi. 	(9.81) 
<ii> 	ij=n.n.n. 

The flow diagram in the h = 0 plane is shown in figure (9.3). The arrows 
indicate the directions of the flows under successive RG transformations. 
All systems with Hamiltonians of the form of eqn. (9.81) (and many oth-
ers too!) exhibit critical behaviour governed by the critical fixed point 
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Figure 9.3 Flow diagram for an Ising model with nearest and next nearest neighbour 
interactions. 

shown. Note the following additional features of the diagram. The critical 
manifold includes the critical fixed point and intersects the Ki.  and K2 
axes at the critical value of those couplings Kf and Iq. The significance 
of this is that the system described by the Hamiltonian of eqn. (9.81) 
with [K] = (Kr, 0), for example, will undergo a phase transition at a 
critical temperature Tc  = Ji /kBiff, with critical exponents determined 
by the critical fixed point shown, which has a non-zero value for K2. Fur-
thermore a system described by a next nearest neighbour Hamiltonian 
(with K1  = 0) is in the same universality class as the nearest neighbour 
Ising model. The critical manifold has indeed two unstable directions: one 
which flows towards the low or high temperature codimension one fixed 
points, and one out of the h = 0 plane towards the sinks. 

9.4 ORIGIN OF SCALING 

9.4.1 One Relevant Variable 

Now that we have some qualitative feeling for RG flows, let us see 
quantitatively how the RG accounts for scaling behaviour. We start with a 
simple example, namely a system with only one coupling constant, which 
can be taken to be temperature (or equivalently K = J/kBT). Then 
under an RG transformation Re, T is transformed to T' = Rt(T). At a 
fixed point, T* = RI(T*). Linearising in the vicinity of the fixed point, 
we have 

T' — T* = Rt(T) — Rt(T*) 	(9.82) 

:-_. At(T — T*) + OUT — T*)2) 	(9.83) 
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where 
At  

As we argued before, because  

OR1 
°T T=T• 

ALAI, = Ate, 

we have 

(9.84) 

(9.85) 

At = et, 	 (9.86) 

where yt  is an exponent to be determined from eqn. (9.84). In this exam-
ple, T* is indeed the critical temperature. For concreteness, let us consider 
the case where the system is originally at a temperature above the critical 
temperature. Defining 

(9.87) 

= JP, 	 (9.88) 

which is why we wrote the exponent in eqn. (9.86) as yt. Now iterate the 
RG transformation n times, to give 

	

i (n)  = (-et )nt. 	 (9.89) 

This describes how t changes under an n-fold change of scale by a factor 
t. 

In order to make contact with the critical exponents, consider how 
the correlation length transforms. After one RG transformation, e = /C,  
and thus, after n transformations 

f(t) = re(t(n)). 	 (9.90) 

But j(n)  is given by eqn. (9.89). Hence, 

ot) = rot  rye). 	 (9.91) 

Although we have proceeded as if l were an integer (to aid our intuition 
based on block spins), in fact this is not necessary. Let us therefore allow 

to be arbitrary and choose it to satisfy 

= (b/t)1/1", 	 (9.92) 

T — T* 
t= 	 

T* 
the recursion relation (9.82) becomes 
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with b being some arbitrary positive number much larger than unity. Thus 

E(t) = 	e(b) as t 	0. 	 (9.93) 

Note that C(b) is the correlation length for temperatures well above Tc, 
where fluctuations are small, and standard approximation methods, such 
as perturbation theory work well. Comparing eqn. (9.93) with the defini-
tion of the critical exponent v: N rv, we read off 

1 
v = 

Yt 
(9.94) 

IT 
= 7  log At  = 7  log — 1 	1 	[ 

OT  

ORt 

] * 	
(9.95) N  

Thus, knowledge of R1, or of a good approximation to it, enables us to 
calculate A1, yt  and hence v. This is the basic idea of the renormalisation 
group. 

We can use a similar calculation to find how the free energy density 
transforms under the renormalisation group. After one RG transforma-
tion, we have 

f(t) = 	f(t'). 	 (9.96) 

Iterating n times, and choosing f as before, we obtain 

t dlys 
f(t) = 	f(b). 	 (9.97) 

Differentiating twice with respect to t, and comparing with the definition 
of the specific heat exponent c ti  t-cv leads to the result 

d 
— = 2 - a. 
Yt 

(9.98) 

Combining with eqn. (9.94), we recover the Josephson scaling law 

2 - a = vd. 	 (9.99) 

This is our central result. The exponent yi is simply given by eqns. (9.86) 
and (9.84): 



with 
1\4=  ( ORT IOT ORT 10H) 

ORIII IOT ORI,I1OH j T.T* • 
H=li s  

(9.108) 
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9.4.2 Diagonal RG Transformation for Two Relevant Variables 
Let us now consider a slightly more representative example, with two 

relevant eigenvalues corresponding to t and h. Then we have for the sin-
gular part of the free energy density 

f (t, h) = Cd  f(t1,111), 	(9.100) 

where T and H transform into 

T' =RT(T,H); 	(9.101) 
H' =RNT,H). 	(9.102) 

RT and Ril  are functions to be determined by the chosen coarse-graining 
procedure. Let us consider the neighbourhood of the fixed point TT H* 
given by 

T* =RT(T*,H*); 	(9.103) 
H* =RT(T*,H*). 	(9.104) 

We expect that H* = 0 for magnetic systems like the Ising model. Lin-
earising about T*, H* in the variables 

AT = T —T* 
Ali = H — H* 

we obtain the linearised RG transformation 

( 
AH')  
AT') 

 =m(All 
(

OH) k 	.)' 

(9.105) 
(9.106) 

(9.107) 

The eigenvectors of M will in general be linear combinations of AT and 
AH. In many cases, M is diagonal, and t and h are not mixed. To ease 
the presentation, we will assume this to be the case, for the time being. 
Then, writing the eigenvalues of M as 

Ait  = Cat; 	 (9.109) 
Ail = eh, 	 (9.110) 
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the RG transformation becomes 

Ch') 	AOp  Ae ) (tit) 

After iterating n times, the correlation length transforms as 

e(t,h) = in  e(1" inYh  h). 

It we choose h = 0, then we recover the same result as before: 

253 

(9.112) 

t', 	v = 1/yt. 	 (9.113) 

Note that we can also set t = 0 and see how E  diverges as h --+ 0: 

(0,h) = e(0, inYhh) 	(9.114) 
ti it-1/Yh as h 	0. 	(9.115) 

We will shortly see the physical significance of the exponent yh. The sin-
gular part of the free energy density transforms according to 

f(t,h) = d  f(e, hi) = r d f (t(n) h(n)) 

= i—nd Atnyt InYh h), 	(9.116) 

which the reader will recognise to be of the form conjectured in the 
Kadanoff block spin argument, eqn. (9.17). Choosing In  = brlivt, we 
obtain 

f (t,h) = tdlYtb-d  f (b,hlehlvt), 	(9.117) 

which is precisely the scaling form (9.20), with 

2 - a = dv = —; 
Yt 

A = Yhht• 	 (9.118) 

This is a very important result. Not only have we succeeded in deriving 
the static scaling hypothesis from the RG, but we also have a way to 
calculate the exponents yt  and yh, at least approximately, from the RG 
recursion relations. 
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9.4.3 Irrelevant Variables 
Let us now examine the effect of irrelevant variables, which we ne-

glected in writing down eqn. (9.100). Under an RG transformation, the 
free energy density transforms according to 

f (t, h, k3, K4, .) = rd  f (hAl , kalq, K  44 • • .) 

where 

	

Ati, Ap > 1; 	(9.119) 

Al, 	< 1, 	(9.120) 

and the irrelevant variables k3, K4, . are linear combinations of the 
original coupling constants, which diagonalise M. Then 

f(t,h, ka, K4, • • .) = i-d Atlyt , heit k31Y3 k4tY4 ...), 	(9.121) 

where the exponents y3, y4, etc. are negative, in accordance with eqn. 
(9.120). After n iterations, 

h, K3i  k4, • .) rnd folnYt , hentlh k3enY3 k4 enY4 ...\ ) 	(9.122) 

leading to the scaling form 

h, .ka, K4, • • .) = tdlYtb-d .1k0 -eft 
ht -YhlYt ,Kit-V 319t k4 2-Y 41Yt 

(9.123) 
Now, as t 	0, the terms in the irrelevant variables become vanishingly 
small: K3t-Y3/Y1  -+ 0 etc., and we obtain 

f (t, h, 16, 	.) = td/sit f(b,ht-YhlYt ,0,0, .). 	(9.124) 

In passing from eqn. (9.123) to eqn. (9.124), we have assumed that (e.g.) 
the limit K3  --+ 0 of f(t, h, K3,...) is analytic. In fact, this assumption 
is frequently false! Even, in the simplest situations, described by Lan-
dau theory for a scalar order parameter (i.e. the Ising universality class), 
the failure of this assumption has important ramifications, as shown in 
exercise 9-2 at the end of this chapter. When the free energy density 
is singular in the limit that a particular renormalised irrelevant variable 
vanishes, that irrelevant variable is termed a dangerous irrelevant vari-
able. The parameter b multiplying the quartic term in the Landau free 
energy of eqn. (5.55) is a dangerous irrelevant variable. 
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9.4.4 Non-diagonal RG Transformations 

Now that we have explained the basic notions of the RG, let us men-
tion how one proceeds in the general case where the linearised RG trans-
formation M is not a symmetric matrix. In this case, it is necessary 
to distinguish between two sets of eigenvectors, left eigenvectors and 
right eigenvectors. Right eigenvectors eR  of a matrix M satisfy 

M • eR = AReR, 
	 (9.125) 

where AR is the right eigenvalue. Left eigenvectors eL, and left eigenvalues 
AL satisfy 

eL • M = ALeL. 	 (9.126) 

In this equation, eL is a row vector, multiplying the matrix M from the 
left. Taking the transpose of eqn. (9.126), we obtain 

MT  • eL = ALey. 	 (9.127) 

Comparing with eqn. (9.125), and using the fact that the determinant of 
a matrix is the determinant of its transpose, we see that, in fact, the left 
and right eigenvalues are equal. 

The most important result for present purposes is the orthogonality 
of left and right eigenvectors, which we now demonstrate. Let a label the 
eigenvectors. Then, multiplying eqn. (9.125) on the left by ef , we have 

el' • M • eR° = A.'ef • ek. 	 (9.128) 

Similarly, multiplying eqn. (9.126) on the right by 4, we obtain 

el • M • eR = eel' • eR. 	 (9.129) 

Subtracting we find that 

eL • eR (A° — na') = 0. 	 (9.130) 

Thus, if the eigenvalues are nondegenerate, el: is orthogonal to 4, for a 0 
a', and these eigenvectors can therefore be chosen to be orthonormal. If 
some eigenvalues are degenerate, then a Gram-Schmidt orthogonalisation 
must first be performed between the appropriate left or right eigenvectors; 
however, in this case, it is then possible that the resulting left or right 
eigenvectors may not span the original space. 
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For present purposes, these results require that in general, we replace 
eqn. (9.103) by 	

5K = E doerd 	 (9.131) 

and replace eqn. (9.76) by 

ch" )  = et7)  • 5K. 	 (9.132) 

The subsequent development of the theory is essentially unchanged, and 
may be carried through in a straightforward manner. 

9.5 RG IN DIFFERENTIAL FORM 

In this section, we present the RG in a differential form that is very 
convenient to use in practice, and which avoids various technical compli-
cations that can arise in the discrete RGY 

Suppose that we start with a system whose lattice spacing is a, and 
that we renormalise out to blocks of size la. Now construct blocks of size 
sta, with 1 < s < oo; then 

[K]8t  = Ra [K I ]. 	 (9.133) 

The differential RG transformation is obtained by choosing s = 1+e: 

d[Ke] 	lim [K]o+ot  - [K]t  
(9.134) 

(9.135) 

- 
dl 	c-+o 

The right hand side can also be written 

1 0 Ra[K 

• 

as 

B[Kt ] 
8=e 1 	Os 

defining the non-linear transformation B[Ifi]. Thus, the RG recursion 
relations are sometimes written in a form to emphasise the analogy with 
dynamical systems: 

d[KT ] = B[Kr],  
(9.136) 

dr 
with the time-like variable r = log I. The fixed points are then the solu-
tions of 

B[K1 = 0. 	 (9.137) 

7  See, for example, M. Nauenberg, J. Phys. A. 8, 925 (1975); D.J. Wallace and 
R.K.P. Zia, Rep. Prog. Phys. 41, 1 (1978), section 3.2.1.1. 
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Figure 9.4 Block spin construction for the Ising model on a triangular lattice. 

Note that eqn. (9.136) is a coupled set of non-linear ordinary differential 
equations. We can integrate these equations out to any desired length 
scale. As one does so, the correlation lengths shrinks, and eventually the 
system is driven well away from the critical fixed point to a regime where 
the correlation length is small — i.e. (b) in eqn. (9.93) — and the free 
energy or other quantities may be computed by perturbation theory. Then 
one can match the solutions of eqn. (9.136) onto the solutions of ordinary 
perturbation theory outside the critical region. 

9.6 RG FOR THE TWO DIMENSIONAL ISING MODEL 

Now it is time to put the ideas above into practice. We will study a 
realisation of the RG which is closest in spirit to the original Kadanoff 
block spin approach, and which involves only simple computations? We 
will only present the crudest approximation to the RG transformation 
itself: more refined and systematic real space procedures are possible, but 
rapidly become very technical? 

We consider the Ising model on a triangular lattice, with Hamilto-
nian 

= K 	SiSi h 	Si. 	 (9.138) 
(15) 

8  The approach presented here is due to Th. Niemeijer and J.M.J. van Leeuwen, Phys-
ics 71, 17 (1974); see also their chapter in Phase Transitions and Critical Phenomena, 
vol. 6, C. Domb and M.S. Green (eds.) (Academic, New York, 1976). 

9  A useful overview is to be found in Real Space Renormalization, T.W. Burkhardt 
and J.M.J. van Leeuwen (eds.) (Springer-Verlag, New York, 1982). 
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Block spins are defined by grouping together the spins at the vertices of 
each triangle of the lattice, as shown in figure (9.4), and computing the 
block spin SI in block I from the majority rule 

SI = sign{st + sl + sl}, 	(9.139) 

where ST is the jth spin in the Ph block. Note that the SI are normalized, 
and that the lattice spacing for the block spins has been enlarged by a 
factor t = 0. Our goal is to construct an approximate RG with this 
transformation, even though an exact solution to the partition function 
for the two dimensional Ising model in the absence of an external field 
was obtained by Onsager. His solution yields the values of the critical 
exponents a = 0 and 6 = 15, from which other critical exponents can 
be calculated, using scaling laws. We will calculate the critical exponents 
approximately, but to facilitate the comparison between the RG and the 
exact result, let us first calculate the exact values of the eigenvalues of the 
RG transformation. 

9.6.1 Exact Calculation of Eigenvalues from Onsager's Solution 

Since 2 — a = vd and d = 2, we expect v = 1. Thus, the exponent 

N = 1, 	 (9.140) 

and the eigenvalue At  should have the value 

At  = = 1/3-. 	 (9.141) 

We can work out what A" should be from eqn. (9.35), which read 

2(d — yh ) = d — 2 + 77. 	 (9.142) 

Using the result proved in the exercises at the end of this chapter that 

d + 2 —  
(9.143) 

d — 2 + 
we find 

and thus 

Hence, 

= 1/4 

d + 2 — 	4-1/4 

(9.144) 

(9.145) 

(9.146) 

Yh — 	 =15/8. 
2 	2 

Ah  = (i3)15/8  V. 2.80. 

Note that Ah and At  do depend on the block size f, but the critical 
exponents are independent of C. 
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9.6.2 Formal Representation of the Coarse-grained Hamiltonian 
The next step is to write down a formally exact representation of the 

coarse-grained Hamiltonian 1-1. To ease the notation, we will write vi to 
denote the set of spins which make up the block spin Si. Thus 

cri 1.51, 51,S11- 
	(9.147) 

Each value of the block spin Si may arise from 4 configurations of the 
original spins: 

= +1 = 111 
111 
111 
111; (9.148) 

Si = —1 = 111 
111 
111 
111 • (9.149) 

The coarse-graining has preserved the total number of degrees of freedom: 
originally there were 23  = 8 configurations of the spins per plaquette of 
the lattice, whereas after coarse-graining, for each plaquette there are 
two values of the block spin, each arising from four configurations of 
the original spins. Thus in total, there are 2 x 4 = 8 configurations per 
plaquette. The coarse-grained or effective Hamiltonian is given by 

evisil = E  en{s,,/} 
{o,} 

(9.150) 

We will estimate 71' using perturbation theory. We begin with the case 
h = 0. The Hamiltonian is conveniently split into two parts: interactions 
between spins within one block spin, and interactions between spins in 
different block spins. We write 

71 =Ito +V 
	

(9.151) 

where the interactions within a block spin are given by 

Ito = K 	 (9.152) 
I i,jEI 
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and the interactions between spins in different blocks is 

V=KE E sisi. 	(9.153) 
1$J iEl jEJ 

Ho will serve as our zeroth order, unperturbed Hamiltonian, whilst V will 
be considered to be a perturbation. Define the average of a quantity A 
with respect to no by 

E (01}  ell“s1,47.11A(51,491) 
(A(SiDo= 	Efuil  eno{si,c1) 	• (9.154) 

Then eqn. (9.150) becomes 

clefs') = (ev\ x"--• 00(s,r,a/).  
/o L, 	 (9.155) 

{ail 
If M is the total number of blocks in the system, then 

E en°{si'°/ }  = Zo(K)m, 	(9.156) 
{ar} 

where Zo(K) is the partition function for one block, subject to a given 
value of 

Zo(K)= E exp {K (5(51+ 514 451)} . 	(9.157) 
Si S2 S3 

Using the spin configurations of eqns. (9.148) and (9.149), we find that 
Zo(K) is independent of S1 and has the value 

Zo(K) = 3e-K + ea If 

In summary, we have reduced the problem of calculating 1-1' to that of 
evaluating 	

ens{ = (eV)0  Z0(K)M. 
	 (9.159) 

9.6.3 Perturbation Theory for the RG Recursion Relation 
How do we compute (e1)0? A useful technique is to use the cumulant 

expansion. We write 

<en°  = (1 + V+ —V2  + ...) 	 (9.160) 
o 

V2) 
= 1 + (V)0  + 	+ 	 (9.161) 

2 

(9.158) 
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Figure 9.5 Interaction between nearest neighbour block spins to 0(V). 

and recall that V is a perturbation, and is therefore to be considered 
small, in some sense. Then, using 

log(1 + x) = x — x2/2  + 0(x3), 	 (9.162) 

we have 

log (e1')0 = (V)0 	 172  (V2)0  — (2  + 0(0). 	(9.163) 

Re-exponentiating, we finally obtain 

(eno  = exp {(1/0  + 2:2[(V2)0  — (v)o] + o(v3)} . 	(9.164) 

The terms in the exponent on the RHS are called cumulants, and the 
expansion of eqn. (9.164) may be obtained in a more systematic way. 
Thus 

1-e{.5.0 = M log Zo(K) + (V)0  + IRV% — (v)oj + o(o) (9.165) 

The term M log Zo is clearly regular, being the partition function for 3 
spins and so does not contribute to the singular behavior. 

The term (V)0  couples nearest neighbor blocks. Writing 

V = EVIJI 	 (9.166) 

and referring to figure (9.5), we have 

	

Vij = K(4)(51 + 	 (9.167) 
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Thus 
(17  j )0  = 2K (SY SI)o . 	 (9.168) 

Since 'Ho itself does not couple different blocks, the average in eqn. (9.168) 
factorises: 

(V/40  = 2K (4)0  (Si )o  . 	 (9.169) 

Now 

(s3  )0 =
Zo 	

syeKEsirsy+sysir+sisiii. 	(9.170) 
{0.7} 

We evaluate this for each of the configurations of eqns. (9.148) and (9.149). 
For Sj = 1, we find that 

whereas for 

e3K 	e —K 
(9.171) 

(9.172) 

(SA) 

Sj = -1, we find that 

(SA) 

e3K +3e —K' 

e3K 	e —K  
e3K 	3e—K • 

Hence e —K 	e3K 
(4)0 = Sj (9.173) [e3K 	3e_Ki. 

Similarly 

(s1)0= a I 
K— 	OK 1 e 

(9.174) [e3K 	3e-K J 
and thus 

(V)0  = 2.Kf(K)2  E SISJ; 	 (9.175) 
(IJ) 

e3K 	e—K 
(9.176) 4)(K) = e3K +3e_K  • 

In summary, the effective Hamiltonian is, to first order in V, 

1e{S/} = M log Zo(K) 	K'ESISJ + 0(V2); 	(9.177) 
(IJ) 

=21(40(K)2. (9.178) 

This is our goal! We have calculated an RG transformation, albeit in a 
rather uncontrolled way, and derived a crude approximation to the recur-
sion relation for the coupling constant. 
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9.6.4 Fixed Points and Critical Exponents 
• The next step in the procedure is to find the fixed points of the RG 

transformation that we have found. The fixed points satisfy 

K* =2K*4,(K*)2, 	(9.179) 

which gives K* = 0, co, or t(K*) = 1/V.2-. Inverting the latter relation (it 
helps to use the substitution x = exp(4K)), we find that the non-trivial 
fixed point, which we will refer to as Kc, is given by 

1 K, = 
4 
—log(1 + 2Nri) = 0.34. (9.180) 

The non-trivial fixed point value K, 0.34 compares reasonably with the 
exact result of Onsager: 

1 K,= 4— log 3 = 0.27 (9.181) 

The eigenvalue 
OK' At  = —nr„.1 = 1.62 

Aw • 
(9.182) 

which is not too far from the exact value NTS= 1.73 given by eqn. (9.141). 
We can improve on this result by going to 0(V2) in the perturbation 

expansion, requiring us to calculate 

(V2)0 — 	= K2  (E E sisps,risn) - K2 E E (sisi)0  (smsoo  
ij mn 	 ij mn 

(9.183) 
where spins i and j must be on different blocks from each other and 
spins m and n must also be on different blocks from each other. Now 
(SiS3)0  = (Si)0  (Si)0  so (9.183) is zero unless either Si is in the same 
block as 5m  and Si is in the same block as Sn  or Si is in the same block 
as Sn  and Si is in the same block as S,n. But since Si and Si cannot be in 
the same block, as cannot be S,n  and Sn, we are forced to consider second 
and third nearest neighbor interactions, as shown in figure (9.6). 

The results of this calculation turn out to be 

At  = 1.77 
A2 = 0.23 
A3  = —0.12. 	 (9.184) 
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Figure 9.6 Interactions between spins to 0(V2). 

The irrelevant eigenvalues with IAI < 1 are associated with second and 
third nearest neighbor couplings, which are generated under renormal-
isation, even though absent in the original Hamiltonian. It seems that 
the results are converging satisfactorily towards fd; although systematic 
extension of the calculations that we have performed do converge to the 
correct result, the convergence is not uniform. 

9.6.5 Effect of External Field 

Let us now examine the case h 0 0. We can calculate Ah by a little 
trickery, at least in the crudest approximation. We expect h* = 0; how 
does a small deviation 6h = h — h* affect the calculation of 7-e? Let the 
change in fl due to a small external field bh be SH'. Then, by definition, 
we have 

eif{s,}  = E  en{si,c,/} 	 (9.185) 
{or} 

e7V-1-67{' = E  en{si,cri}-Ftu{shai}. 	(9.186) 
{oi} 

Subtracting and writing er = 1 + x 0(x2) we obtain 

I  V' 
Ef,, 01'51'61100S I, OA 

5711{Si} = 	
 

(9.187) 
,--,{0./} 

Now, by definition, 

5')-0.5"/, 	= Sh 	Si = Sh E 	 (9.188) 
i 	I Id 

61-1i  = 45111  E SI. 	 (9.189) 
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But eqn. (9.187) implies that to zeroth order in V 

	

(ohEE
Sir 	 (9.190) 

I id )0 

= 45hE(st +Si+ .51)0 . 	(9.191) 

The right hand side is obtained from eqn. (9.174): 

(Sno  = Sl 4,(K) i = 1,2,3. 	 (9.192) 

Thus, we obtain the recursion relation 

	

ble = 3.10(K)5h, 	 (9.193) 

which, at the critical fixed point, yields the eigenvalue 

Ah = 34(K,) = — 2.12. 	 (9.194) 
Nfi 

Comparing this zeroth order result with Onsager's exact result Ah CY. 2.8, 
we see that the agreement is as good as can be expected. In fact the first 
order in V calculation for Ah gives 3.06, and the second order calculation 
gives 2.76. 

9.6.6 Phase Diagram 

We can also use RG recursion relations to deduce the phase diagram 
of the system. Our calculation above did not consistently treat the case 
of the external magnetic field, but this is straightforward to do, and the 
reader is invited to perform this calculation in the exercises at the end of 
this chapter. The resultant flow diagram is sketched in figure (9.7). Some 
features of the flow diagram are already visible in the calculations that 
we have done above, however. Along the h = 0 axis there are three fixed 
points, at K = 0, K = Kc, and K = oo. We have already discussed the 
local behaviour around the critical fixed point ICc; the fact that At  > 1 
tells us that this fixed point is unstable and that the flows are repelled 
towards K = 0 and K = oo. The line h = 0 is sometimes referred to as an 
invariant manifold: if the initial coupling constants are on an invariant 
manifold, they remain on it after renormalisation. For h # 0, the flow 
behaviour is ultimately towards one of the two sinks at h = ±oo. 

What is the nature of the fixed points on the invariant manifold at 
K = 0 and K = oo? The former corresponds to high temperatures: setting 
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Figure 9.7 Global RG flow diagram for the two dimensional Ising model, according 
to the calculation in the text. C is a critical fixed point, S are sinks, P is a paramag-
netic continuity fixed point, F is a discontinuity fixed point representing the first order 
transition for H = 0, T < re. 

K = 0 in the original Hamiltonian shows that at this fixed point, there is 
no energetic advantage for the spins to align. The probability distribution 
corresponding to the Hamiltonian ie at this fixed point is proportional to 
exp 7-1*, and thus describes a paramagnetic state. At this paramagnetic 
fixed point, the eigenvalues of the linearised RG transformation are, 
using eqns. (9.178) and (9.193), 

At  = 1/2 Ah = 3/2. 	 (9.195) 

On the invariant manifold, the paramagnetic fixed point is stable, but it 
is unstable in the magnetic field direction. The fixed point at K = oo is 
also an attractor on the invariant manifold, and has eigenvalues 

At  = 2 Ah = 3. 	 (9.196) 

We refer to this as the ferromagnetic fixed point, because the nearest 
neighbour interaction is so strong there that in the probability distribution 
for the spin configurations, states with spins all aligned are energetically 
favourable. The eigenvalue At  = 2 is apparently a signature of an unstable 
fixed point, but this is an artifact of the position of the fixed point being 
at K = oo: near the fixed point at oo, we can write the recursion relation 
on the invariant manifold as 

(K-1)' = (K-1) 	 (9.197) 

showing that the fixed point at K-1  = 0 is actually attractive. Another 
way to see this is that eqn. (9.196) implies that as K -+ oo, K' is always 
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bigger than K, showing that the flow is towards K = oo. The most 
interesting aspect of this fixed point is the value of the magnetic eigenvalue 
Ah. Recalling that the scale factor of the RG transformation was e = A/3-, 
we see that we could write Ah = id , where the dimensionality d = 2 of 
course. In the next section, we will show that this value for the exponent 
signifies a discontinuity fixed point, and is the manifestation in the 
RG of a first order phase transition in the basin of attraction of the 
ferromagnetic fixed point. We will also see that one can calculate the 
order parameter, i.e. the magnetisation, using the RG. 

9.6.7 Remarks 

This example of the RG that we have just worked through shows ex-
plicitly the construction of the projection operator and the analyticity of 
the RG transformation. In general, one must be very careful about pre-
serving the analyticity of the RG transformationl° It is also very easy to 
be drawn to erroneous conclusions by not properly respecting the sym-
metries of the problem, as the following examples illustrate. 

Consider a Heisenberg model with spins that are three component 
vectors — the so-called 0(3) Heisenberg model: S = (Sr, Sy, S z),1S12  = 1, 
and Hamiltonian 

nHeis = K 	si • Si. 	 (9.198) 
(ii) 

Suppose that we tried to use the RG transformation 

Si = sign (E 57) = ±1. 	 (9.199) 
id 

This would map 

llHeis{K, Si} 	nishig{Ki, 	 (9.200) 

suggesting that the exponents yt  and yh of the Heisenberg model are the 
same as those of the Ising model. This is wrong! The problem is that 
the RG transformation (9.199) is not analytic: the rotational invariance 
(i.e. 0(3) symmetry) of the Heisenberg Hamiltonian is destroyed by this 
projection. 

10 See R.B. Griffiths and P.A. Pearce, Phys. Rev. Lett. 41, 917 (1978); R.B. Grif- 
fiths, Physics 106A, 59 (1981); see also the article by van Enter et al. referenced under 
footnote 3. 
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Another instructive example to consider is the antiferromagnetic Ising 
model: K < 0. A naive application of (e.g.) the real space calculation per-
formed above yields a renormalised nearest neighbour coupling constant 
K' which is positive. Thus, one is led to conclude that the Ising antiferro-
magnet and ferromagnet are in the same universality class, since they map 
onto each other under renormalisation. This conclusion is correct in zero 
field, as we showed in section 2.7.2, but is wrong when h 0 0. The anti-
ferromagnetic state orders at a wavevector q=r1a, where a is the lattice 
spacing; however, the renormalisation group transformation constructed 
above eliminates modes on this scale, in favour of the long wavelength 
q 	0 modes which are important for the ferromagnetic transition. Thus, 
the transformation that we used is physically wrong for the antiferromag-
netic transitionP In summary, it is dangerous to proceed without thinking 
about the physics! 

9.7 FIRST ORDER TRANSITIONS AND NON-CRITICAL 
PROPERTIES 

We have seen how the global behaviour of the RG flows is related to 
the phase diagram of the system. The RG can also be used to calculate 
quantitatively physical properties over the entire phase diagram, and in 
this section we will specifically focus on the order parameter, showing how 
the line of first order phase transitions for h = 0, T < T, is accounted for 
by the properties of the low temperature fixed poine2  The basic idea is 
that the RG is a set of transformations on which drive the system to one 
of the stable fixed points at low or high temperature. Sufficiently close to 
these fixed points, it is expected that the usual variety of approximation 
schemes will work, in contrast to the situation near a critical fixed point. 

Consider, for concreteness, how the magnetisation M[K] of the Ising 
model changes under a RG transformation, starting at a point in coupling 
constant space [K(01: 

M[K(°)  = Og 

= rd 

= 	doh,  

unlh=0+ 
09[11:1 ] 

h=0+ 
Og[All 

(9.201) 

(9.202) 

(9.203) 

Oh 

Oh 	Oh' 	1 1,1=0  

11  J.M.J. van Leeuwen, Phys. Rev. Lett. 34, 1056 (1975). 
12  B. Nienhuis and M. Nauenberg, Phys. Rev. Lett. 35, 477 (1975). 
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In the above, g[K] is as defined in eqn. (9.44). Let 

a[K] Oh'm- 
u" W=O+ 

so that 

M[K(°)] — a[K(°)]  id M [KT 
Iterating n times, we obtain 

m[R.(0)]  = n a[K 
id 

 (i)] _ M[K0+11],  

1-.=0 

(9.204) 

(9.205) 

(9.206) 

where [K(O} are the coupling constants after i iterations. Suppose we reach 
a fixed point at M[K(°°)] after an infinite number of iterations. Then 
M[K(°°)] = 0, —1 or +1, depending upon in which basin of attraction 
was the initial point [K(°)] in coupling constant space. 

The first-order transition for h = 0, T < Te  is manifested as a discon-
tinuity AM[K] in the magnetisation across h = 0 for T < T. i.e. 

AM[K] = M(T,O+) — M(T,r) # 0. 	(9.207) 

The necessary condition for AM[K] 0 0 is that M[KM] 0 0, and thus 

a[Ki] 
id  #n (9.208) 

i=0 

If M[KM] is to be bounded and non-zero, we also require that 

, a[Kj] .um 	= I. 	 (9.209) 
i-4co id  

But a[K00] is nothing other than 011'10h evaluated at the fixed point 
[K(°°)], which in this case is the low temperature ferromagnetic fixed 
point. Thus, at this fixed point we must have 

Oh' 
Ah = Oh 	

ad 
= . 	 (9.210) 

This criterion — that one of the eigenvalues of the RG has A = ed  — is 
sometimes known as the Nienhuis-Nauenberg criterion, and is the mani-
festation of a first-order or discontinuity fixed point. All other fixed points 
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have y, < d. In the example of the preceding section, we directly found 
that Ah = id, showing that the low temperature ferromagnetic fixed point 
was a discontinuity fixed point associated with the first order transition in 
the two dimensional Ising model. The formula (9.206) can also be used to 
calculate the magnetisation at any point in coupling constant space, and 
in particular shows that for h = 0, the magnetisation is zero for T > 
but non-zero for T < Tc. The spontaneous magnetisation as a function of 
temperature below T, is in qualitative agreement with the exact result, 
when computed using the lowest order recursion relations derived earlier 
in this section, and the agreement can be systematically improved using 
more elaborate real space RG approximation schemes. 

9.8 RG FOR THE CORRELATION FUNCTION 

For completeness, we briefly sketch the RG derivation of the scaling 
form for the two-point correlation function. As we saw in section 5.7.4, 

82  log Z[h(r)]  
0 G(r — ri ) — 

	

	 .211) 
oh(r)511(ri) ' 

where h(r) is now a spatially dependent external magnetic field (divided 
by kBT) which couples to the magnetisation or order parameter. We as-
sume that h(r) varies slowly over a block size. 

Now consider the effect of a RG transformation: 

Z{K' ,h' ,...} = Z{K,h,.. .}. 	 (9.212) 

Differentiating with respect to h(r), we obtain 

log Z {h' (r)} 462  log Z {h(r)}  
M(051411 — 5h(r)4 h(e) * 

The fact that the external field is assumed to vary slowly over the scale of 
a block implies that if r and r' in eqn. (9.213) are taken to be the centres 
of two different blocks of spins, then the derivative simply generates an 
average over all the spins in these blocks: 

(9.214) 

= £2dG(Ir 0,m). 	 (9.215) 

(9.213) 

82  log Z {h} 
td 

Si 
(iEr  sEr' 

Si 
)) Id 

— 
( 

ier 

2  ) 

Sh(r)fh(r') 
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The n in the equation above simply indicates that the correlation function 
is evaluated with the coupling constants appropriate to X Near a fixed 
point, we can linearise the RG to obtain 

u.  
, (r — ril ,

e  ) — 
452  log Z {hi  , K'}  

(— r 
I ' 511i(r)511' (e) 	 (9.216) 

1 ö2  log Z fle , K'}  
- Az oh(r)oh(e) 	

(9.217) 

= j
2  
. 12d G  or — r'I, MD. 	(9.218) 

A 11 

Explicitly writing in the dependence of the relevant variables yields 

id 
G (Ir I 	 in

) 2 

— 11 , tet,ttivh) = (— Gar — III, t , h), (9.219) 

which is eqn. (9.30), derived from Kadanoff's argument. 

9.9 CROSSOVER PHENOMENA 

In the remaining sections of this chapter, we discuss some of the ex-
perimental consequences of the existence of scaling. In this section, we 
focus on crossover phenomena, the term given to phenomena associ-
ated with the failure of a system to attain its asymptotic scaling regime. 
This can occur for several reasons, the most important of which are: 

(i) Small residual external fields may be present. 
(ii) Weak interactions, neglected in writing down 7-1, may break the 

symmetry of 71, and thus generate relevant directions at fixed 
points which are not associated with the external variables such as 
temperature, magnetic field etc. These relevant variables can drive 
the system from the neighbourhood of one fixed point to that of 
another. How do we describe this, and what are the experimental 
consequences? 

(iii) The effects of disorder. We will examine under what circumstances 
disorder can be expected to influence critical behaviour. 

9.9.1 Small Fields 

In their simplest form, crossover phenomena can be thought to be 
nothing more than the fact that as the external parameters on the system 
are varied, such as h or t, different asymptotic regimes of the scaling form 
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of the free energy density are encountered. To see this, consider the scaling 
form for the free energy density 

h = 112-aF±(h/ItIA), 	 (9.220) 

where, according to eqn. (8.10), 

F±(0) = constant. 	 (9.221) 

How does F±(x) behave as x oo? We know that 

M — 	1 °I:9 N t2-'°11(hIlti°). 	(9.222) 
kBT Oh 

On the critical isotherm t = 0, M h"5, by definition; hence, assuming 
that Fi(x) x" as x oo, we can find A by eliminating the t dependence 
from eqn. (9.222): 

hA  t2-a-A 
tAA  

using eqn. (8.26). Thus, we require that 

A = P/A = 1/b, 

and conclude that as x -4 co 

(9.223) 

(9.224) 

F±(x) x A+1. 	(9.225) 

In an actual experiment on (e.g.) magnetic critical phenomena, there is 
always a small residual magnetic field /10  present, perhaps due to the Earth 
or to impurities in the sample. The experimentally relevant question is 
this: for given values of h and t is the system in the limit x -4 0 or in 
the limit x oo? The answer depends on whether or not h/ItIA is much 
larger than unity or much less than unity. The crucial observation is that 
the actual asymptotic regime depends upon how close the system is to 
criticality. 

For example, in figure (9.8), a system is cooled in the field ho. In the 
critical regime, but yet not too close to t = 0, h/ltf° is much smaller than 
unity, and one observes the critical behaviour implied by the x --+ 0 limit of 
the scaling function; this is the behaviour one would expect if the external 
field were exactly zero. However, when t is reduced sufficiently that the 
system is well to the left of the solid line, then h/ItIA is much larger than 
unity, and the x oo behaviour of the scaling function is probed. This is, 
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hl 
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'true critical 
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ho  
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behaviour 

	 t 

Figure 9.8 Crossover in a magnetic system. The curve represents the points satisfying 

= 1. Above the curve, the x 	oo regime of the scaling function is probed, 

whereas below the curve, the x 	0 regime is probed. An experiment in a small, but 
non-zero, field Ito will pass from one regime to the other as t is reduced to zero along 
the dashed trajectory. 

of course, the completely wrong limit if one is interested in determining the 
critical properties in zero field. Thus, close to the transition, the scaling 
behaviour deviates from the correct critical behaviour if there is a small 
non-zero field present. It should be clear from the above discussion that 
the transition between the two regimes is by no means sharp, because in 
general, one does not know how rapidly the scaling function approaches 
its limiting behaviours. Thus the line hiltl° = 1 is just a rough guide to 
where behaviour intermediate between the two different scaling regimes 
will be found. 

These remarks have important experimental consequences, which aug-
ment the difficulties in determining critical exponents, which were pointed 
out in section 4.6. Within the critical regime we might observe the spe-
cific heat c behaving as follows: there exists a reduced temperature tx, 
not sharply defined, but where for tx  < t << 1, c 	, but for t < tz, it 
is found that there is a cross-over to a different power law c ti re'', with 
a not being the true a. 

9.9.2 Crossover Arising From Anisotropy 
A prevalent and therefore important example of crossover is that aris-

ing from terms neglected in the original Hamiltonian 7-t. As we have seen, 
the critical behaviour is governed by fixed points in the space of all pos-
sible coupling constants consistent with the symmetry of the problem. In 
reality, our identification of the symmetry of the problem represents an 
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idealisation, and there are often small, and therefore neglected, interac-
tions which can break these idealized symmetries. 

For example, although it is commonplace to model ferromagnets by 
the Heisenberg Hamiltonian 

= K 	si  • si, Is1 2 = 1, 	 (9.226) 
<ii> 

which is invariant under global rotations of the spins, usually it is the 
case that these spins lie on a crystal lattice, and, through spin-orbit cou-
pling, local crystal fields can introduce anisotropy, thereby destroying 
the rotational invariance. Two common manifestations are single ion 
anisotropy and anisotropic exchange. The former corresponds to a 
perturbation of the Heisenberg Hamiltonian, such as 

= K E Si • S.;  + g E(57  )2 , 	(9.227) 
<ii> 

whereas the latter corresponds to the case when the exchange interactions 
are different in different lattice directions; a common situation (yet still 
an idealisation) is uniaxial anisotropy, represented by the Hamiltonian 

= Kz  E SI SI Kxy  E (ST SIT S'S') 	(9.228) 
<ii> 	<ii> 

These modifications turn out to have qualitatively the same effectP 
How do we expect the phase diagram to be modified? At high tem-

perature, we still expect a paramagnetic phase. But at low temperatures, 
the spins order and now the energy of the system depends upon the di-
rection in which the spins align. Let us just consider the case of single ion 
anisotropy, eqn. (9.227). If g > 0, then the spins can lower the physical 
energy H = —kB711 by aligning along the z axis, and at low enough 
temperatures 

(Sf) = ±1, 	(9.229) 

a state characteristic of the low temperature behaviour of the Ising model. 
On the other hand, if g < 0, then the spins order in the x—y plane; writing 
Si. = (Sx, SY), we have at low enough temperatures 

OS112) = 1, 	 (9.230) 

13  A detailed discussion is given by A. Aharony in Phase Transitions and Critical 
Phenomena, vol. 6, C. Domb and M.S. Green (eds.) (Academic, New York, 1976). 
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Figure 9.9 Crossover behaviour for single ion anisotropy, showing different regimes 
of behaviour as the temperature and anisotropy strength g are varied. 

which is behaviour characteristic of the XY model. 
A consequence of these considerations is that, for large g, the phase 

transition from the paramagnetic phase as T is reduced will be in either 
the Ising or XY universality class, depending upon the sign of g. For g = 0 
the transition is in the Heisenberg universality class, but for small values 
of g, the RG flows will end up at the stable low temperature fixed points, 
namely an Ising fixed point or an XY fixed point. Thus we conclude 
(heuristically) that the symmetry breaking term must be relevant at the 
Heisenberg fixed point. Small but non-zero values of g will grow under 
renormalisation, and will carry the system towards a new fixed point, 
either Ising or XY, depending upon the sign of g. Around each of these 
fixed points, there will be scaling phenomena different from those of the 
Heisenberg fixed point. In general, scaling fields which break a symmetry 
are relevant operators. A high symmetry fixed point is usually (but not 
always) unstable with respect to a fixed point of lower symmetry. 

We can describe this crossover behaviour, in terms of the RG, with 
two relevant scaling fields near the Heisenberg fixed point. One is t, the 
other is g, and the singular part of the free energy density will transform 
as 

fa(t, g) = rd  fa(ttnh , geg) 	 (9.231) 
= 	F±(g1t1-#), 	 (9.232) 

where the crossover exponent 4  is given by 

= y9/yt  > 0. 	 (9.233) 

The exponent 0 is positive, because yg  > 0. The reader will notice at 
once the similarity between this description and that of the crossover 
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phenomena in a magnetic field. Thus, we expect to see effective Heisenberg 
behaviour when 101-01 << 1 and Ising or XY behaviour when 01-01 >> 1 
(depending upon the sign of g). Note that the size of the crossover region 
depends upon g and is therefore not universal. 

Another form of anisotropy which is commonly encountered is cubic 
anisotropy, specified by the Hamiltonian 

Ii = nHeis + 9E [(Si )4 + (5n4 + (57)4] • 
	(9.234) 

This is not invariant under continuous rotations, but is invariant under 
discrete rotations of the spins through r/2. Cubic anisotropy turns out 
to be irrelevant at the Heisenberg fixed point in d = 3, but is relevant in 
d = 4. In general, one expects that there exists a whole series of crossovers, 
determined by arranging the terms of the Hamiltonian in order of decreas-
ing symmetry. 

In practice, fixed points such as the Ising or Heisenberg fixed point 
may be unstable not only to symmetry reducing interactions, but also to 
long-range interactions, such as dipolar interaction04  

9.9.3 Crossover and Disorder: the Harris Criterion 

Real systems are almost always impure, and it is therefore impor-
tant to determine whether or not quenched disorder affects the critical 
behaviour. In the language of the RG, is disorder a relevant variable at 
the critical fixed point of the pure system? To answer this, we must first 
quantify the disorder, and then estimate the corresponding eigenvalue of 
the linearised RG, taking disorder into account. In general, the critical 
behaviour of disordered systems is very complicated, but there is a simple 
heuristic criterion, due to Harrisr for when the critical behaviour of the 
disordered system does not differ from that of the pure system. 

We consider a system with quenched disorder, such as the presence of 
impurities at random sites in a crystal lattice, which when pure undergoes 
a continuous phase transition at a temperature Tc. If the strength of the 
disorder (i.e. the mean impurity concentration in our example) is denoted 
by p, then in general the critical temperature is Tc(p), and the correlation 
length diverges as 	

N IT - Tc(p)I-v(P). 	 (9.235) 

14 A map of the different possible crossover phenomena is given by M.E. Fisher, Rev. 
Mod. Phys. 46, 597 (1974). 
15  A.B. Harris, J. Phys. C 7, 1671 (1974). 
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We have assumed that the critical exponent v in the presence of disorder 
depends continuously on the strength of the disorder, and that as p 0, 
v(p) tends smoothly towards its value for the pure system v(0). The effect 
of the disorder may be viewed as changing the local co-ordination number 
or exchange interaction, and thus, from eqn. (3.139), may be expected to 
cause the transition temperature to vary from point to point within the 
impure sample. We model the distribution of 

bsTc(r) = Tc(r) — Tc(p) 
	

(9.236) 

throughout the sample as a Gaussian random function, with two-point 
correlation function 

W(r — r') E (bTc(r)45T,(V)) 	 (9.237) 

and mean zero. 
Having modelled the disorder, we now attempt to assess its effects on 

the critical behaviour of the pure system. In essence, we are estimating 
the relevance or irrelevance of disorder at the critical fixed point of the 
pure system, although we may still allow a non-universal quantity such as 
T, to have the modified value Tc(p). To this end, consider the fluctuation 
in Tc(p), averaged over a region of linear dimension L much greater than 
the lattice spacing a, namely 

	

ddr 	
ddri W (r — r') 

]1/2 

	

ATc(p) = [f -17  	(9.238) 

Assuming that W(r) decays faster than Irrd for large Irl, then 

ATc(p) L-d12 • 	 (9.239) 

To examine the stability of the pure fixed point to disorder, we require 
that over a correlation volume, the fluctuations in Tc  should be small 

	

compared with IT — Te(p)I as T 	Tc(p) in order that the transition 
be well-defined. At the pure fixed point, ti  IT — 74)1', so that the 
criterion for the well-defined transition becomes 

IT — Tcommd/2 << IT — Tc(P)I 	 (9.240) 

as IT — Te(p)I —+ 0. Thus we require for self-consistency that vd/2 > 1, 
which is equivalent to 

a < 0, 	 (9.241) 
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using the Josephson scaling relation (8.3). This result is known as the 
Harris criterion. 

The physical argument given above is another example of crossover; 
as we have seen, the disorder introduces a new variable into the thermo-
dynamic description of the system, which we may take to be w ATc(P). 
This is a "temperature-like" variable, and therefore has associated with it 
the eigenvalue yw  = yt. Hence, the crossover exponent associated with the 
disorder is Ow  = yulyt  = 1. The crossover from the pure fixed point to the 
disorder fixed point (if it exists) occurs approximately when 01'4  > 1. 
By virtue of eqn. (9.239), to N 4-41/2, so that the crossover point is when 
It1"/2-1  > 1. If vd/2 - 1 > 0, then there is never a crossover from the pure 
fixed point i.e. the pure fixed point is stable if v > 2/d, as we obtained 
before. 

What happens when the pure fixed point is indeed unstable? Detailed 
calculations16  show that the disorder fixed point is a critical fixed point 
with new critical exponents; in particular, the value of a at the disorder 
fixed point is never positive!' 

9.10 CORRECTIONS TO SCALING 

In practice, it is very difficult to access the asymptotic critical regime 
t 	0. Irrelevant variables which can be ignored in the t 	0 limit 
may not therefore be negligible in practice. As an example, consider the 
susceptibility 

xT(t,h) = 	U-1 ,k3t-Y3/Ye ,...) 	(9.242) 

where k3  is an irrelevant scaling field and 	< 0. In zero field (kr= 0), 
we expect FX to be an analytic function of the irrelevant variables 1(3, ... 
and so we expand II for small values of its arguments!8  

xT(t, 0) = ItrY (A±  + B±k3Itl-Y3ht + 	, 	(9.243) 

16  See the review by T.C. Lubensky in Ill-Condensed Matter, R. Balian, R. Maynard 
and G. Toulouse (eds.) (North-Holland, Amsterdam, 1979); for an account of the ef-
fects of disorder with long-range correlations, see the article by A. Weinrib and B.I. 
Halperin, Phys. Rev. B 27, 413 (1983). 
17  A rigorous argument, applicable to many situations of practical interest, is given 

by J.T. Chayes, L. Chayes, D.S. Fisher and T. Spencer, Phys. Rev. Lett. 57, 2999 
(1986). 
18  This is valid as long as the variables in question are not dangerous irrelevant 

variables. 



9.11 Finite Size Scaling 	 279 

where A and B are non-universal constants. As expected, the leading 
behavior as t 	0 is Itri, but there is a first correction of order ItrY3/1h. 
If ly3l/yt  > 1, then this correction becomes smaller as t —+ 0, whereas if 
IY31/Yt < 1, the correction may not be negligible for small but non-zero t. 
Most importantly, when ly31/yt  < 1, the first order correction is actually 
singular, giving rise to a cusp at t = 0: to appreciate this, it is instructive 
to sketch 'tin  for two different values of n, one larger than unity, the 
other smaller than unity. Due to this behaviour, such a correction is often 
referred to as a confluent singularity. 

For example, in the Ising universality class, the leading correction 
term due to irrelevant variables is 

YVN = —0.5 	 (9.244) 

and this correction to scaling is indeed observed in numerical calculations 
and experiments involving the superfluid transition, and must be taken 
into account when attempting to extract critical exponents from datal9  

9.11 FINITE SIZE SCALING 

We have seen in chapter 2 that strictly speaking, there are no phase 
transitions in a finite system at non-zero temperature. Experiments on 
real systems, as well as numerical calculations, using either transfer ma-
trix techniques or Monte Carlo simulation2°  all use finite systems. How 
does the failure of a finite size system to exhibit a phase transition mani-
fest itself in the RG, and what can one learn about phase transitions from 
studies on finite systems? The answers to these questions form the topic 
of finite size scaling. Although first hypothesised before the advent of 
the RG, finite size scaling is conceptually clearer within the framework of 
the RG, and that is how we will present this subject here. 

Consider a system with linear dimension L and volume V = Ld  . The 
singular part of the free energy density scales like 

Lan L-1) = fsga IL-1). 	 (9.245) 

Here, the free energy density is written as a function not only of the 
coupling constants, but also of the inverse size of the system. The last 

19  See, for example, the article by G. Ahlers in Phase Transitions, Proceedings of the 
Cargese Summer School 1980 (Plenum, New York, 1982), p. 1. 
29  A pedagogical introduction to this important technique is given by K. Binder 

and D.W. Heermann, Monte Carlo Simulation in Statistical Physics (Springer-Verlag, 
Berlin, 1988). 
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argument on the RHS of eqn. (9.245) comes from the fact that lengths 
are reduced by a factor t during a renormalisation group transformation 
Rt. The RG transformation is a local transformation, and therefore it 
does not matter if it is performed on an infinite system or a finite system. 

Close to a fixed point of the RG, we can write eqn. (9.245) in terms 
of the right eigenvectors of the linearised RG, as before: 

f3(t,h,k3,. , L-1) = rd fa(tet heh k3iy3 	IL-1). 	(9.246) 

We see that L-1  behaves like a relevant eigenvector with eigenvalue 

AL = 	(9.247) 

and thus 
yL = 1. 	 (9.248) 

This is in accord with our interpretation of relevant variables as those 
parameters that must be adjusted by the experimenter in order to place 
the system at the critical point. A phase transition occurs only when the 
parameter L-1  is zero, along with the other parameters that must be set 
to zero, such as t and h in Ising systems. Thus, in the formula of this 
section, the variable t is defined with respect to the critical temperature 
in the thermodynamic limit. 

A corollary of the above is that crossover effects become important 
for finite L. To see this, let us consider the scaling form for the singular 
part of the free energy density at h = 0, for simplicity: 

L(t, L-1) = It12-  Ft(L-l iti-nlye) 	(9.249) 

	

= It12—'Fr(L-11t1-1/w). 	(9.250) 

A useful way to write this is in terms of the bulk correlation length of the 
infinite system (i.e. with L = oo), which we denote now by GO(t): 

18(t,L-1) = It12-"Ft(GoL-1). 	 (9.251) 

We can analyze this result in terms of crossover phenomena, as follows. 
For the true critical behavior, we want L-1  = 0, i.e. the limit x —0 0 of 
Ft (x). Thus the x —o oo limit of F± (x) does not correspond to the correct 
critical behaviour. When L-lt-v < 1, or equivalently L > WO, then 
the correlation length is not affected by the boundaries of the system, 
and the thermodynamic properties are those of the infinite system. In 
the opposite limit, encountered sufficiently close to t = 0, L < WO or 
equivalently L-lt-Y >> 1, and the system is no longer governed by the 
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Figure 9.10 (a) Crossover regimes in finite size scaling. (b) Resultant heat capacity 
curve. 

critical fixed point. In this case, the actual correlation length cannot grow 
beyond L as t 0, and the transition appears rounded. 

The specific heat has the form, given by eqn.(9.250) 

c(t,L-1) = 121-"FI(L-1t-P) 	 (9.252) 

= 121-"(L-lt')-a/vD(tLI P) 	(9.253) 

= La/vD±  (WO' ), 	 (9.254) 

where D(x) is a new scaling function, defined by eqn. (9.253), with a 
maximum at x = xo. Thus the specific heat peak occurs at a reduced 
temperature shifted from that in the infinite system by an amount 

tL = xo/L1P cc L-11v. 	 (9.255) 

Similarly, the maximum height of the specific heat is 

c(tL, L-1) = La/"D(x0) oc L4v. 	 (9.256) 

We can exploit these phenomena in practice to obtain estimates of 
the true critical behavior. As an example, consider the finite size scaling 
of the correlation length itself. 

Ot, L-1) = g(tet,iL-1) 	 (9.257) 
= 	 (9.258) 
= t'(Ltv)P(Ltv) 	 (9.259) 
= LP(Ltv). 	 (9.260) 

In eqn. (9.259), we have defined a new scaling function P(x), which must 
have the following limiting behaviour. For L 	oo at fixed t < 1, we 
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Figure 9.11 Finite size scaling of the correlation length. 

expect 040) , t'. Thus P(x) -+ x-1  as x -4 oo. For L finite and t --* 0, 
F(x) tends towards a constant. It is perfectly analytic in this limit and 
e ,--, L. Thus, at finite L we can expand about t = 0: 

L 
	- A + BtL1lv + 0(t2 ), 	 (9.261) 
e(t,L-1) 

where A and B are constants. The beauty of this form is that if we plot 
Lk versus the coupling constant K, for different values of L, all the curves 
will pass through the same point when t = 0 (or equivalently K = K*). 
Thus we can determine K*. 

We can also compute the critical exponents, using the fact that 

0 (  L  ) 
B.Lliv 

OK 	e(t, L-1) 

as T --), 0. In practice, one computes v by taking the logarithm: 

(9.262) 

0 
log Trc 	

1 
(-0 = log B + - log L. 	 (9.263) 

v 
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EXERCISES 

Exercise 9-1 
This question concerns the static scaling hypothesis. 

(a) Derive the relation 
d+2-i  - d- 2 + 

A good starting point is the set of expressions derived from the corre-
lation function scaling in the Kadanoff argument, relating yi  and yh 
to v, n and A. 

(b) The critical exponents could conceivably be different above and below 
the transition. Here we will study v (T > TO and v' (T < TO, and 
show that they are equal. The scaling hypothesis or the Kadanoff 
argument leads to the relation for the singular part of the free energy 
density 

mt,h)=I t I dYFf (Tifi:vyh ' 

with v = v (t > 0) and v = vi  (t < 0). For fixed h # 0, h(t,h) 
should be a smooth function of t, because the only singularity which 
we expect is at t = h = 0. Show that h(t, h) can be written in the 
form 

fs(t,h)= hdivh44(--L' ItivYh 
and explain how the smoothness assumption mentioned above con-
strains the analytic form of the functions 0±. Hence show that v = v'. 

Exercise 9-2 
This question concerns dangerous irrelevant variables, and shows 

how to reconcile the apparent contradiction between the statements "mean 
field theory works above d=4" and "mean field theory violates hyperscal-
ing because a = 0 and v = 1/2". 
(a) Briefly: what is the evidence for the first statement, and what is the 

violation referred to in the second statement? 
(b) Consider the singular part of the free energy density 

fa(t,h,k3)= 	f8 0.,ht-YhlYg ,k3t-V 3IYO. 

K3  is an irrelevant variable, so y3  < 0. In principle there are other 
irrelevant scaling fields in this expression, but we have suppressed 
them for simplicity. As t 0, we expect that 

h(t,h, k3) 	td /Ye fs(1,ht-Vhhit,0) 
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and the usual scaling results follow. However the limit may not be 
well-defined, in the way discussed in section 7.3. Namely, it might be 
the case that 

lim fa(x ,y, = x-" f (x , y) 	> 0. 
.o 

Show that this leads to a violation of the Josephson hyperscaling law. 
(c) In the Landau theory discussed in lectures, the coefficient of the guar-

tic coupling, /co, is relevant for d < 4 and irrelevant for d > 4, as you 
might expect. It can be shown that in this case µ = 1 and the crossover 
exponent y3/yt  = -(d - 4)/2. Hence, show that for d > 4, Landau 
theory does satisfy hyperscaling after all. 

Exercise 9-3 
In this question, you are asked to perform a variant of the real space 

renormalisation group method - decimation - on the d = 1 Ising model, 
and to compare the results with exact results which you obtained from 
the transfer matrix method. We work with a system of N sites, N may be 
taken to be even, and we assume periodic boundary conditions SN+1 = Si. 
The Hamiltonian is 

= KEsisi+i + h ESi+ NK0.  

The partition function is 

ZNP-11 = Tr en. 

(a) The partition function can be expressed as a trace over all spins of a 
product of transfer matrices. Write down the transfer matrix for this 
case. Now perform the sum over the even numbered spins only, to 
obtain a new effective transfer matrix for a system with twice the lat-
tice spacing as the original system. Hence calculate the renormalised 
coupling constants K', h' and Ko in terms of the original coupling 
constants. Verify that your expression for the renormalisation group 
transformation preserves the symmetries of the original problem. Why 
did we need Ko? 

(b) Set the field h = 0. Show that the recursion relation for K is 

e4K' = cosh2  (2K ) 

and find the fixed points and sketch the flow. Work with the variable 
w = e-2K 
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(c) Linearise the recursion relation and find yt. 
(d) Now set h # 0 and find the fixed points, the flow diagram and the 

exponent yh. 
(e) What do your results mean for the behaviour of the d = 1 Ising 

model? Use the exact results from the transfer matrix calculations 
done in class to calculate yh and yt. 

Exercise 9-4 
Perform the real space RG calculation for the Ising model in d = 2 in 

a non-zero external magnetic field, using the scheme described in section 
9.6. Construct the RG flow diagram. 

Exercise 9-5 
This question concerns the use of finite size scaling to estimate critical 

exponents and transition temperatures from transfer matrix calculations 
in a strip. Consider the d = 2 Ising model on a square lattice. There 
are N rows parallel to the x axis and M rows parallel to the y axis. We 
will require that N oo whilst we will calculate the transfer matrix for 
M = 1 and M = 2. Periodic boundary conditions apply in both directions, 
so that our system has the topology of a torus. The Hamiltonian is 

N M 

= K EE SmnSm+in SmnSmni-l• 
n=1 m=1 

In exercise 3-2, you constructed the transfer matrix for this problem, and 
calculated the eigenvalues Al  and A2. The correlation length is given by 

E-1 = log Aipt2.  

Use finite size scaling and the results from exercise 3-2 to estimate the 
critical value of K and the exponent v. 
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CHAPTER 10 

Anomalous Dimensions 
Far from Equilibrium 

10.1 INTRODUCTION 

The solution to the problem of critical exponents given in the previous 
chapter may not seem very satisfying. Although we appear to have gone 
beyond mean field theory by the process of successively integrating out 
short wavelength degrees of freedom, we seem to have finessed the ques-
tion: where do anomalous dimensions come from? 

The present chapter addresses this question directly, in the terms of 
reference of chapter 7. There, we saw that anomalous dimensions reflect 
the presence of a microscopic length scale, which affects the behaviour 
of thermodynamic and correlation functions asymptotically close to the 
critical point. However, we also pointed out that the mathematical mech-
anism by which this occurs is simply that, in general, a function F(x) 
may not be replaced by F(0) as x 0. Thus, anomalous dimensions may 
occur not just in the equilibrium statistical mechanics of critical points, 
but in other areas of physics too. 

We will explain the calculation of anomalous dimensions by renormal-
isation group techniques taking as our examples certain non-linear diffu-
sion problems that arise in fluid dynamics. Although far from equilibrium, 
and thus formulated as partial differential equations (PDEs) rather than 

287 
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in terms of a partition function, these non-linear diffusion problems also 
lead to anomalous diffusion laws

In the conventional case of on
square displacement of a particle
time t is 

(

The problems described below le

(x2

where a is an anomalous dimens
The key point about these probl
governed by a similarity soluti
be deduced from dimensional ana

Despite the apparent dissimi
fluid flow far from equilibrium,
anomalous dimensions are actual
problem of divergent perturbati
and 7; the problem is resolved b
first developed by S. Tomonaga
physical interpretation is quite s
Renormalisation cures the proble
to anomalous dimensions. We wi
introduces an arbitrary length sca
inal problem, and thus cannot ap
solution possesses an invariance 
this invariance which the renorma
be exploited in conjunction with 
anomalous dimensions? 

Although this sounds very tec
we will see. 

1  Note that the PDEs in question ha
element in them, unlike the Langevin eq
8.3. Such stochastic differential equati
integrals and were shown to be equival
and H.A. Rose, Phys. Rev. A 8, 423 (1
Dynamical Critical Phenomena and Re
vol. 104, Ch.P. Ent (ed.) (Springer-Ver

2  This form of the RG, which we will 
and F.E. Low, Phys. Rev. 95, 1300 (19
l 
e-dimensional diffusion, the root mean 
 from the starting point as a function of 

x2) N t. 	(10.1) 

ad to laws of the form 

)N ti—", 	 (10.2) 

ion, which may be positive or negative. 
ems is that the long time behaviour is 
on, but the similarity variables cannot 
lysis. 
larity between critical phenomena and 
 the techniques involved in calculating 
ly identical. Thus, we will encounter the 
on series, just as we did in chapters 6 
y the procedure of renormalisation, 

, R.P. Feynman and J. Schwinger. The 
traightforward in the present context. 

m of divergences, but still does not lead 
ll see that the renormalisation procedure 
le it, which was not present in the orig-
pear in the solution. In other words the 
with respect to variations of a, and it is 
lisation group expresses, and which may 
any approximation scheme to calculate 

hnical, it is conceptually very simple, as 

ve no noise source or other explicit stochastic 
uation and KPZ equation, discussed in section 

ons may be formulated in terms of functional 
ent to field theories by P.C. Martin, E.D. Siggia 
978). See also the article by H.K. Janssen in 
lated Topics, Springer Lecture Notes in Physics 
lag, Berlin, 1979). 
present in this chapter, is due to M. Gell-Mann 
64). 
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10.2 SIMILARITY SOLUTIONS 

10.2.1 Long-time Behaviour of the Diffusion Equation 

We begin with a very simple and familiar example: the problem of 
solving the one-dimensional diffusion equation starting from a localised 
initial condition. 

1 Otu(s,t) = 
2 
-K02u(x

" 
t) -oo < x < oo, 	(10.3) 

z  
with diffusion coefficient IC and initial condition 

u(x, 0) = 
Aor/2 e _x2/2t2 

(10.4) 
2 

Here B is the width of the initial distribution, and Ao is the area un- 
der the initial distribution, which we will refer to as the mass m of the 
distribution: 

00 
m 	u(s,t)dx 	(10.5) 

= Ao for t > 0. 	 (10.6) 

On physical grounds, we are interested only in solutions that vanish suf-
ficiently fast at spatial infinity that m is well-defined, and which have 
continuous spatial derivatives, at least up to second order. Thus 

u(x,t) 	0 as ix' -4 oo. 	 (10.7) 

The diffusion equation was derived from a conservation law, and therefore 
m is conserved. After time t, the solution is 

u(x,t) - 	 Ao 	e-z2/2(Kt-i-e2 ) (10.8) 
A/27r(rct /2) 

which for long times t >> 1211c reduces to 

u(x,t), Ao 	_z2 	
as t 	co. 	(10.9) 

127 A-rict 
e

/2„t 

This result can also be obtained by keeping the value of t fixed, but taking 
small, i.e. 12 < 

u(x,t) , Ao e-~2/2Ktas I -+ 0. 	(10.10) 

In the limit -4 0 the initial condition reduces to 

u(x, 0) = AoS(x), 	 (10.11) 

and we conclude that the long time behaviour of the initial value problem 
with 	0 is given by the degenerate limit of the initial value problem 
with 	0. The solution in this limit is of course the Green function for 
the diffusion equation. 
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10.2.2 Dimensional Analysis of the Diffusion Equation 
For present purposes, the most important aspect of the similarity 

solution is that it is dimensionally deficient: whereas the original problem 
was specified by the variables x, t, I and Ao, the degenerate problem is 
specified only by x, t and Ao. The fact that £ is no longer a parameter 
is very powerful, and enables us to construct a similarity solution, using 
dimensional analysis. 

The dimensions of the various quantities above, in the system of units 
ULT, where U = [u] is independent of LT, are: 

[u] = U; [x] = [1] = L; [t] = T; [Ao] = UL; [K] = L2T-1. (10.12) 

The dimensionless groups, conventionally denoted by II, Ili, etc., may be 
chosen to be 

II 
= u 

 111 = Wit , 	Wit. 

All 	

Ard 112  = 7-ct 

All other dimensionless groups of parameters may be constructed from 
these, if desired. Since the II's are dimensionless, the following relation 
must be correct: 

II = 1(111, 112), 	 (10.14) 

where f is a function to be determined, and represents the solution of our 
problem. We will sometimes refer to f as a scaling function, to emphasise 
the connection to the static scaling hypothesis. For the similarity solution, 
Q does not appear in the list of parameters of the problem, and so 

II = LOW, 	 (10.15) 

where fs  is the scaling function for the similarity solution. It is straight-
forward to determine h: let e = x/ pct. Then our dimensional analysis 
shows that the solution is of the form 

u(x,t) = 
Amt f

a(e), e = x/ pct. 	(10.16) 

Substituting this assumed form into the diffusion equation (10.3), we ob-
tain an ordinary differential equation (ODE) for the unknown function 

+ 4.4+ I's= 0, 	 (10.17) 

which must satisfy 
fs(x) 	0, as Ix! —+ oo, 	 (10.18) 

(10.13) 
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by virtue of eqn. (10.7). A second condition on the scaling function f, 
comes from the conservation law (10.6): substituting in the form (10.16), 
we obtain 

[00 

Lfs(e)d6 =1. (10.19) 

In addition, f, must be an even function of e, by virtue of the relation 
(10.17) and an even initial condition, and thus 

f;(0) = 0. 	 (10.20) 

We solve the ODE for f9(x) by noticing that eqn. (10.17) is an exact 
differential equation and therefore can be integrated to give 

f; + (ef,)= C, 	(10.21) 

where C is a constant of integration. The constant C must be zero because 
when e = 0, .f.;(e) = 0. Integrating eqn. (10.21) gives 

f,V) = Be-42/2, 	 (10.22) 

where B is determined by the condition (10.19) to be 

B = 1/ g. 	 (10.23) 

Hence, the similarity solution is 

If„(x,t)= 110 e—x2 2nt 
2rict 

(10.24) 

10.2.3 Intermediate Asymptotics of the First Kind 
We saw that, for the similarity solution, 

II = i,(111), 	 (10.25) 

where f, is the scaling function for the similarity solution. On the other 
hand, for any solution whose initial condition was 	0, the solution must 
be of the form 

II = 1(111,112). 	 (10.26) 

For long times, 112 	0, and 'common sense' dictates that for sufficiently 
long times, we can regard 112  to be small enough that it may be set equal 
to zero in eqn. (10.14). Hence 

f,(111) = f(III,0). 	 (10.27) 
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The 'common sense' intuition used above is the statement that a diffu-
sion process loses all memory of the initial distribution once (x2) >> /2. 
Although this seems an innocuous assumption, it remains an assumption, 
and remarkably, may not be correct for some problems, as we will see. In 
section 10.2.1, we explicitly verified this assumption, for the case where 
the initial condition was a Gaussian profile, and the reader is invited to 
perform the corresponding calculation for an arbitrary initial condition 
in the exercises at the end of this chapter. The assumption that we may 
safely take the limit to obtain eqn. (10.27) allows us to determine the long 
time behaviour of the diffusion equation, starting from initial conditions 
with € 0 0, from the similarity solution. We will refer to the asymp-
totics of the long time limit as intermediate asymptotics, the term 
`intermediate' denoting the fact that the ultimate behaviour is u = 0; 
the case, where the 'commonsense' assumption is correct, is referred to as 
intermediate asymptotics of the first kind An immediate consequence of 
the assumption of intermediate asymptotics of the first kind is that the 
asymptotic behaviour of the diffusion equation for long times is given by 

u(x,t) N 2-1/2 g 	x 	(10.28) 
N fiTt 

with g(x) being a function satisfying g(x) --+ constant as x 0, which is 
indeed what we found in the previous sections. 

Intermediate asymptotics arise in many situations in science, and the 
most common, even unconscious, assumption is that the asymptotics is 
of the first kind. We may formulate this, in general, as follows. Given a 
physical problem expressed in dimensionless variables II, III , II2, 	, the 
solution of the problem takes the form 

II = 1(111,112, • • .), 	(10.29) 

with f a function that can only be determined from a detailed analysis 
of the problem. If the limiting behaviour as (e.g.) II2  —> 0 is of the form 

11  ^-• f(111,0,• • .), 	(10.30) 
then the asymptotics is said to be of the first kind. 

The example given here demonstrates the importance of similarity 
solutions: they are easy to construct, because they satisfy an equation 
with one less independent variable than the original PDE, and, most 
importantly, the intermediate asymptotics of solutions that are themselves 
not similarity solutions are nevertheless often given by similarity solutions. 
Thus, these solutions have physical significance. 

ta

3  G.I. Barenblatt, Similarity, Self-Similarity and Intermediate Asymptotics (Consul-
nts Bureau, New York, 1979). 
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t-0 

aau0  Porous rock 

Impermeable 
rock 

Figure 10.1 Spreading of a groundwater mound in a porous rock. 

10.3 ANOMALOUS DIMENSIONS IN SIMILARITY 
SOLUTIONS 

It is not always possible to obtain similarity solutions using dimen-
sional analysis, because anomalous dimensions may occur. In this section, 
we will present an example of how this happens, by examining the long 
time behaviour of a modification to the diffusion equation. We begin by 
motivating the equation to be studied. Next, we find that a naive appli-
cation of dimensional analysis fails to obtain the long time behaviour in 
this case, although a modified similarity solution, with an anomalous di-
mension, does represent the long time behaviour. In this section, we will 
closely follow the presentation of these topics due to Barenblatt, postu-
lating the form of the similarity solution, and subsequently determining 
the anomalous dimension by requiring that this postulated form satisfy all 
the boundary conditions of the problem. The following section approaches 
the same problem using the RG. 

10.3.1 The Modified Porous Medium Equation 

Consider a porous medium overlying an impermeable horizontal 
stratum, as depicted in figure (10.1), in which is present a groundwater 
mound. Within the mound, the pores of the rock are partially filled with 
water, whereas outside the mound, the pores are empty of water, but filled 
with gas. The groundwater mound is unstable in the Earth's gravitational 
field, and settles by spreading parallel to the plane of the impermeable 
stratum. We wish to describe the approach to the equilibrium state, where 
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the groundwater mound is completely flat (we ignore the existence of 
atoms here, so the equilibrium state is not a monolayer of finite extent)1 

The dynamics of the settling of the mound can be described by writ-
ing down a PDE for the time evolution of the height h of the mound 
above the impermeable stratum. For simplicity, we will treat the case of 
an axisymmetric mound, so that the height is a function of the radial 
coordinate r in the x - y plane, and time t. Assuming that the flow is 
slow, two approximations are valid. The first is that the pressure in the 
groundwater mound is given by the hydrostatic pressure 

p(r, z ,t) = pg(h(r,t) - z), 	(10.31) 

where the acceleration due to gravity is -gi. The second approximation 
is that of D'arcy's Law: the flux j of groundwater is proportional to the 
gradient of the so-called pressure head p pgz. Thus 

j = --110r(pgh), 	(10.32) 

where K is the permeability (typically 10-8  cm2) and µ is the kinematic 
viscosity of the ground water. It remains to specify the physics associated 
with the transport of groundwater into and out of the pores in the rock. 
A given physical volume of rock cannot be completely occupied by fluid: 
only the pores can be filled by fluid. The fraction of space occupied by the 
pores is known as the porosity m, and is typically about 10-i. When the 
groundwater occupies a pore, only a fraction a is occupied, the remaining 
volume being filled with gas. When the groundwater exits a pore, a thin 
wetting layer is retained on the walls of the pore, and so a fraction co of 
the pore remains filled with groundwater. We will assume that pores are 
in one of these two states of occupation only, and for brevity, we shall de-
note these two states respectively as occupied or unoccupied. This physics 
introduces a fundamental asymmetry into the dynamics of the groundwa-
ter mound: the rate at which empty pores are filled with groundwater is 
not the same as that at which initially occupied pores become depleted of 
groundwater. For the groundwater profile indicated in figure (10.1), there 
is a certain time-dependent radius ro(t) beyond which Oth > 0 and be-
hind which Oth < 0. Thus, for r > ro(t), previously unoccupied pores are 
becoming occupied with groundwater, whereas for r < ro(t), previously 
occupied pores are becoming depleted. 

4  This problem is described by G.I. Barenblatt, Dimensional Analysis (Gordon and 
Breach, New York, 1987), and was studied by I.N. Kochina, N.N. Mikhailov and M.V. 
Filinov, Int. J. Eng. Sci. 21, 413 (1983). 
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To derive the equation of motion for h, we consider the conservation 
of water in a shell of radius r, height h and thickness dr. For r > r0, we 
have 

	

wr2irr 8t h dr = •!--c 8,. [2rrh Or(pgh)[ dr 	(10.33) 

and for r < r0, we have 

	

m(cr — a0)27r 8t h dr = 110,.[2rrh Or (pgh)] dr, 	(10.34) 
11  

where the term on the left hand side is the rate at which groundwater is 
entering/leaving the shell. Thus 

8th = D8r  (rarh2) , 	 (10.35) 

D fj K Ot h < 0; (10.36) 
K2 Oth > O. 

K pg 	 tspg 
=  	 • 	 (10.37) 

2m(cr — cro)µ ; K2 = 2mcri.L 

The PDE (10.35) is to be solved subject to the initial condition that the 
water was confined within a finite region, as depicted in figure (10.1). The 
requisite boundary conditions are that h and the groundwater current 
at radius r, namely 2rrhj, are continuous. Thus, both h and 0,A2  are 
continuous: only at h = 0 (i.e. at the front of the groundwater mound), 
is it therefore permissible for Or h to exhibit a discontinuity. 

Now we have completed our description of the approach to equilibrium 
of a groundwater mound. Equation (10.35) is the expression in cylindrical 
polar coordinates of a more general equation, which we shall refer to as 
the modified porous medium equation: 

Otu(r,t) = D Ad u(r,t)1+n 	 (10.38) 

Here D is a discontinuous function of Btu, as in eqn. (10.36), and Ad 
denotes the Laplacian operator in d-dimensions. This equation, when D 
is a constant, is known as the porous medium equation, and models a 
wide variety of non-equilibrium phenomena in, inter alia, fluid dynamics, 
plasma physics and gas dynamics depending upon the value of n. 

5  For a brief summary, see (e.g.) W.L. Kath, Physica D 12, 375 (1984); D.G. Aron-
son, in Non-linear Diffusion Problems, A. Fasano and M. Primicerio (eds.), Lecture 
Notes in Mathematics vol. 1224 (Springer-Verlag, Berlin, 1986). 

where 

with 



296 	 10 Anomalous Dimensions Far from Equilibrium 

In the following sections, we will focus on the case n = 0, describing 
the pressure u in an elasto-plastic porous medium — one which may ex-
pand and contract irreversibly in response to the flow of a fluid through it6. 
We will refer to this equation as Barenblatt's equation. Note that the 
form of D implies that this equation is non-linear. When D is a constant, 
rather than being a discontinuous function of Btu, Barenblatt's equation 
reduces to the familiar diffusion equation. Needless to say, our discussion 
can be readily extended to arbitrary n and d; see the exercises at the end 
of this chapter. 

10.3.2 Dimensional Analysis for Barenblatt's Equation 
Let us now proceed blindly, and attempt to determine the long time 

behaviour of Barenblatt's equation in one dimension, which we will write 
in the form 

Otu(x,t)= DKOz2u(x,t), 	(10.39) 

with 
1/2 	Otu > 0; D = 	 (10A0) (1 + c)/2 Otu < O. 

The constants is and c can be related to the elastic constants of the elasto-
plastic porous medium and the phenomenological parameters describing 
the fluid flow. Note that [k] = L271-1, whilst c is a pure number. We 
consider, for simplicity, initial conditions, such as (10.4), satisfying 

u(x,0) = 	(-Tex) , 	 (10.41) 

with u(x, 0) and the profile 4(x) normalised as follows: 

00 	 00 

u(x,O)dx = Ao; 	(10.42) L.d)(z)  dz = 1. 
Loo 

The dimensionless groups for the problem are 

2 	' 
11=—/Wi; 	=—• 11 =--,-- A0 	 17ct 	1/Kt 

and the solution must therefore be of the form 

113 = e, 	(10.43) 

11 = f (111,112,113). 	(10.44) 

6  A discussion of this may be found in Barenblatt's book cited in footnote 3. 
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This is the same as eqns. (10.13) and (10.14) for the diffusion equation, 
except that the additional dimensionless group 113  is present. 

For long times, 112  --+ 0, and the considerations of section 10.2 suggest 
that the asymptotics is determined by the similarity solution: thus we seek 
a solution of the form 

Ao
'ci f (ec

u(x,t)= 	, ), e x/  irct, 	(10.45) 

which is even and vanishes monotonically at infinity. We will denote the 
positive value of x where Otu(x, t) = 0 as X(t, e), and the corresponding 
value of e as 

Note that the assumption that the solution is of the form (10.45) implies 
that t o  is a dimensionless constant, independent of time. Substituting into 
Barenblatt's equation, we obtain two ODEs for the scaling function f , one 
valid for Ott/ < 0, the other valid for Btu > 0: 

(1  + Of" +(ef)' = 0, 0  5_ e 5_ eo; 	(10.47) 
f" 	(e f)' = 0, 6 e < oo. 	(10.48) 

Integrating, we obtain 

(1 -I- 	+ (f.f)= 	0 	6; 
	

(10.49) 

+ (ef) = B21 eo e < 00, 	(10.50) 

where B1,2 are constants of integration. The requirement that f(e) be 
even implies that at e = 0, f(e) = 0, and hence B1  = 0. As e oo, we 
require that both f and f' tend to zero in order that f remain integrable: 
hence, B2 = 0. Integrating one more time, we obtain 

= Cice/2(1+c), 
C2e-  2 /2, 

0< 	< fo; 
<o0. 

(10.51) 

Now we match f and f' at e = fo: 

e-4  /2(1+0  = C2e-4 /2; (10.52) 
-4/2(11-e) = C2e-4/2.  (10.53) e 

(1+ c) 

The only solution of these equations is the trivial one C1  = C2 = 0. Hence, 
there is no non-trivial similarity solution of the form of eqn. (10.45) with 
continuous derivatives (up to second order). 

x(t, 
•- 	i•a  • 	 (10.46) 
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What then does this imply for the long time behaviour of Barenblatt's 
equation starting from physical initial conditions with 0 0? Is the prob-
lem not well-posed? Do the derivatives develop singularities? In fact, there 
is a rigorous proof7  that none of these possibilities occur: the solution to 
Barenblatt's equation with the stated initial conditions exists, is unique, 
has continuous derivatives with respect to x to second order, and has a 
continous derivative with respect to t. We conclude, therefore, that the 
long time behaviour of Barenblatt's equation is not of the form postulated 
in eqn. (10.45). 

10.3.3 Similarity Solution with an Anomalous Dimension 

Even though there is no similarity solution in the conventional sense, 
it is still possible to find the asymptotic behaviour by postulating that as 
t 	oo, and 112 	0, the form of the solution, eqn. (10.44) becomes 

	

, 113), as 112  —+ 0, 	(10.54) 

where a is an anomalous dimension, to be determined. We will shortly 
see how eqn. (10.54) arises from the RG, together with a number of tech-
nical assumptions. For now, we follow Barenblatt, and examine the con-
sequences of our hypothesis. Equation (10.54) suggests that we seek a so-
lution to Barenblatt's equation with initial conditions (10.41) and (10.42) 
of the form 

ea  u(x,t) 	Ao
Kt (ictr

= 	(,€) . 	 (10.55) 
V  

This may seem very strange: if we achieve the limit 112  0 by keeping 
t fixed, and letting 	0, then u(x, t) tends towards zero or infinity, 
depending upon the sign of a. The only way to make sense of eqn. (10.55) 
is to assume that 

lim Aof2a = constant. 	 (10.56) 

In other words, Ao must depend on £, and in such a way that the product 
Aot2a remains finite as 	0! When we discuss renormalisation, we will 
see that this mathematical requirement has a very physical interpretation: 
the mass m of the distribution is not conserved in Barenblatt's equation, 
when c 0 0. The initial condition (10.41) satisfying eqn. (10.56) represents 
a function more (less) singular than a delta function, for c > 0 (c < 0). 
Note that the actual value of the constant in eqn. (10.56) is not important, 
as long as it is not zero or infinity. We will choose it in such a way that 

g(0, c) = 1. 	 (10.57) 

S.L. Kamenomostskaya, Dokl. Akad. Nauk SSSR 116, 18 (1957). 
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How do we determine the anomalous dimension a? Substituting the 
hypothesis (10.55) into Barenblatt's equation, we obtain a pair of ODEs 
for the scaling function g, similar, but not identical to those of eqns. 
(10.47) and (10.48): 

e)g" egi  + (1 + 2a)g = 0, 0 < e :5 eo; 	(10.58) 
gll 	egi  + (1 + 2a)g = 0, t o <_ < co. 	(10.59) 

As before, these equations must be solved subject not only to boundary 
conditions at the origin and infinity, but also to matching conditions at the 
point where Otu(x,t) = 0. From eqn. (10.55), these matching conditions 
apply ate = Eo determined by 

+ (1 2a)g(e, c) = 0. 	 (10.60) 

Thus, eqns. (10.58) and (10.59) must be solved subject to the constraints 
that 

g(0, c) = 1; i(0, c) = 0; g(oo, c) = 0 	(10.61) 

together with the continuity of g(eo, e) and g1(6),  c). There are five con-
straints for two second order differential equations Integrating the pair 
of ODEs gives four constants of integration only. Hence, in general, it is 
not possible to satisfy simultaneously all the constraints. However, there 
may exist special values of a for which all the constraints can be satis-
fied simultaneously. Thus, the requirement that an overdetermined set of 
equations have a solution can determine the value (or spectrum of val-
ues) of the anomalous dimension a. This sort of condition is exactly what 
is used to determine energy levels in the time-independent Schrodinger 
equation, and thus we may think of a as an eigenvalue. However, in con-
trast to the situation in quantum mechanics, the eigenvalue problem is 
non-linear, because the point eo is itself unknown at the outset, and is 
determined by eqn. (10.60). In summary, the anomalous dimension a is 
determined by requiring that a non-linear eigenvalue problem have a so-
lution: this is sometimes referred to as a solvability condition, and a 
itself is known as a non-linear eigenvalue. 

Let us now put these considerations into practice. In general, the most 
effective way of computing the non-linear eigenvalue is numerically, using 
a shooting method? For a given value of c, one proceeds, in princi-
ple, by choosing a value for a; then, beginning at e = oo with g = 0 

8  Equation (10.60) may be taken as a constraint, but then the continuity of (1(6) 
is assured automatically; thus there are actually only five constraints in total. 

9  See (e.g.) Numerical Recipes, W.H. Press, B.P. Flannery, S.A. Teukolsky and W.T. 
Vetterling (Cambridge University Press, New York, 1986), Section 16.1. 
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and g' = 0, one solves eqn. (10.59) in small increments .0 back towards 
= 0, monitoring the derivative g'. When condition (10.60) is satisfied, 

the integration continues, but now using eqn. (10.58); the numerical in-
tegration should ensure the continuity of g and g' at co. In this way, the 
value gi(0, c) may be computed. For general a, it will not be zero, thus 
violating the boundary condition (10.61). One then chooses a slightly dif-
ferent value of a and repeats this process. In this way, one can plot a graph 
of AO, c) against a, and thence find the value of a where gi(0, E) = 0: 
this is the value of a corresponding to the given value of E. In practice, 
one cannot shoot from = oo, and an asymptotic expansion near = 00 
of eqn. (10.59) is required to start off the numerical integration. Since 
eqn. (10.59) is linear, the asymptotic expansion is determined up to an 
arbitrary multiplicative coefficient, which may be chosen to be of order 
unity. The choice of this coefficient will of course mean that g(0, e) is not 
necessarily unity, but this value was only an arbitrary normalisation in 
any case, and does not affect the value of the anomalous dimension (i.e. 
the value of a for which g'(0, E) = 0). In fact, for Barenblatt's equation, 
eqns. (10.58) and (10.59) are simple enough that they may be solved in 
terms of parabolic cylinder functions, and the values of eo and a are de-
termined by a pair of transcendental equations (see the exercises at the 
end of this chapter). However, these transcendental equations must be 
solved numerically. 

The result of this procedure (see exercise 10-2) is that for small c, 
the solvability condition yields a unique value a(c) for the anomalous 
dimension. For sufficiently large values of c, the solutions are apparently 
not unique, but the eigenvalue with the smallest value for a(c) corresponds 
to the stable solution. 

In conclusion, although there is no similarity solution of Barenblatt's 
equation, in the conventional sense, making the hypothesis (10.54) leads to 
a self-similar solution with a non-trivial exponent or anomalous dimension 
a. The anomalous dimension is a vestige of the parameters specifying the 
initial condition, Ao  and 1, and the long time behaviour is given by 

where 

u(x,t) •-•.# 	A 	( x E) 
(nt)112+c(6)9  

(10.62) 

A = B lim Ao120  , 	 (10.63) 

and B is a constant with value determined by the normalisation g(0, E) = 
1. In fact, B can only be determined by solving the actual equation, as 
will become clear when we discuss this problem from the point of view of 
the RG. 
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10.3.4 Intermediate Asymptotics of the Second Kind 

We have just seen that the assumption of intermediate asymptotics 
of the first kind fails for Barenblatt's equation. Of course, Barenblatt's 
equation is but one example where this occurs, and Barenblatt has given 
a number of other examples, taken mostly from fluid dynamics, where 
anomalous dimensions arise and are treated by similar methodsl° Thus, 
we are led to formulate the notion of intermediate asymptotics of the sec-
ond kind, as follows: Given a problem expressed in dimensionless variables 
II, no, 	Iln, with solution 

rig g 	—2-') 	as Ho --+ 0, 	(10.65) • irc):n 

where g is a scaling function. The exponents {a} — the anomalous di-
mensions — cannot be predicted by dimensional analysis, but must be 
determined by solving the problem directly, as we saw in the previous 
section. 

Note that in Barenblatt's equation, or in any of the other examples 
given by Barenblatt, the governing equations are simple PDEs, and con-
tain no stochastic element. Thus, it is not necessary for a problem to 
be formulated as a partition function (i.e. a probability generating func-
tion) in order that anomalous dimensions occur. The discussion in chap-
ter 7, not to mention the similarity of eqn. (10.65) with the static scaling 
hypothesis, eqn. (8.24), may suggest to the reader that the anomalous 
dimensions in critical phenomena and the anomalous dimensions in inter-
mediate asymptotics of the second kind are identical; this is indeed the 
case. We will now demonstrate this assertion for Barenblatt's equation by 
using the RG to show how intermediate asymptotics of the second kind 
naturally arises (as a consequence of renormalisation), and to compute 
the anomalous dimensions in an expansion in c. 

There is another interesting exercise, which has not, at the time of 
writing, been accomplished: the identification of the anomalous dimen-
sions in critical phenomena with the exponents appearing in a self-similar 
solution of the second kind suggests that critical exponents may also be 
expressible as non-linear eigenvalues. It would be useful to derive exact 

II = f (no 	• • • , 11.), 	(10.64) 

the asymptotics is said to be of the second kind if, with an appropriate 
choice of exponents a, al , a2... an, the asymptotic behaviour is of the 
form 
10  See footnote 3. 
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equations for thermodynamic and correlation functions, and seek self-
similar solutions of the second kind, thus finding exact relations satisfied 
by the anomalous dimensions. 

10.4 RENORMALISATION 

The purpose of this section is to provide a physical explanation of 
renormalisation, in its most general context. Although initially devel-
oped in conjunction with perturbative quantum field theory, renormalisa-
tion has a direct physical interpretation, conceptually divorced from the 
context of perturbation theory. Thus, we will see that the RG is essentially 
non-perturbative. 

There are two distinct steps in applying renormalisation and renormal-
isation group methods to a given problem. The first step is an extension 
of dimensional analysis, taking into account renormalisation effects. This 
step shows how the solution to the problem can exhibit asymptotics of 
the second kind, as expressed by eqn. (10.65). In addition, the exponents 
found may not be independent, in which case, the RG accounts for the 
scaling laws between these exponents, as we have seen explicitly already. 
In the example of the two dimensional Ising model, this development was 
given in sections 9.2 - 9.4. 

The second step is to combine the RG with an approximation scheme, 
such as perturbation theory, in order to estimate the values of the anoma-
lous dimensions. This second step is exemplified by the explicit calculation 
of section 9.6 for the two dimensional Ising model, where we used the cu-
mulant expansion to approximate the RG recursion relations. The RG on 
its own is vacuous, in the sense that it relates coupling constants at dif-
ferent length scales (in the context of critical phenomena), but does not 
actually calculate any quantities. It must always be combined with an 
actual calculation of the recursion relations, which is almost always ap-
proximate and often involves perturbation theory; thus, it is sometimes 
said that RG 'improves' (e.g.) perturbation theory. We will see this feature 
explicitly in our treatment of Barenblatt's equation. 

The term renormalisation is used in two slightly different but related 
contexts, and it is worth pointing this out explicitly. The first use denotes 
the way that a certain parameter changes under a specified transforma-
tion or operation, an example being the (finite) renormalisation of cou-
pling constants under an RG transformation. The second use refers to the 
procedure employed to remove divergent terms from perturbation theory. 
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We will show that the two seemingly different meanings are actually re-
lated: it is the fact that parameters become renormalised that enables us 
to renormalise a theory and render it finite. 

There are, then, two ingredients to the divergent terms of pertur-
bation theory. The first is intrinsic to the problem at hand, and is the 
singular (but not necessarily divergent) behaviour expressed by the cor-
rect solution to the problem. For example, we have seen that Barenblatt's 
equation with (e.g.) c > 0 does not possess physical solutions for delta 
function initial conditions: only a more singular initial condition in the 
limit 	0 has physical solutions. The second ingredient is the use of an 
approximation scheme which has 'forgotten' to account for renormalisa-
tion. We will shortly see this explicitly, when we construct perturbation 
theory for Barenblatt's equation, starting from the diffusion equation. 

The ideas and techniques discussed in this section are extensively used 
in statistical mechanics and field theory — the generic name given to 
a physical problem capable of being formulated in terms of a functional 
integral. However, the formalism is very complicated in these problems, 
and this tends to obscure the basic physical ideas
renormalisation in a mathematically simpler cont
interesting in its own right, but which also shows
malisation is not solely the domain of field theory.

10.4.1 Renormalisation and its Physical Interpre

The crucial difference between the diffusion equ
equation (with c 0) is that the former is derived
law for u, whereas the latter is not. To see this, not
equation (10.39), the diffusion coefficient ,cD depe

1  	10 (X (t, e — x) , x
D(x)= {? ? 	+ 	0 (X (t, E) x) , x

where 0 is the Heaviside function, and X(t,c) is t
where 4u(x,t) = 0. Thus, the rate of change of t
eqn. (10.5) is 

aim = icD(x) ON(x , t) dx

11  Accounts of renormalisation and the renormalisation grou
by (e.g.) J. Zinn-Justin, Quantum Field Theory and Critica
Oxford, 1989); J. Collins, Renormalisation (Cambridge Un
1987); D.J. Amit, Field Theory, the Renormalisation Group
(World Scientific, Singapore, 1984). 
P Thus, we will study 
ext, which is not only 
 explicitly that renor-
 

tation 

ation and Barenblatt's 
 from a conservation 
e that in Barenblatt's 

nds on x: 

 0; 
(10.66) 

 0, 

he positive value of x 
he mass m, defined in 

 	 (10.67) 

p in field theory are given 
l Phenomena (Clarendon, 
iversity Press, New York, 
 and Critical Phenomena 
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which, upon use of the identity 

DOlu = Oz(DOxu) — (0d3)(exu) 	 (10.68) 

and the boundary condition that Ozu 0 as lx I oo, becomes 

atm = —lc I (0x.1))(exu)dx. 	 (10.69) 

When e = 0, as it is for the diffusion equation, M) = 0, and the mass is 
conserved, as noted in eqn. (10.6). However, when c 0 0, the right hand 
side of eqn. (10.69) does not vanish in general. A similar result holds for 
the general case of the modified porous medium equation. 

Actually, this result is not very surprising — it simply reflects the 
physics of the situation. The simplest way to see this is to think of the 
groundwater problem, described by eqn. (10.35). There, the physics dic-
tated that when groundwater exits a pore, a thin wetting layer remains 
on the walls of the pore. Thus, the quantity of groundwater, which is 
not trapped in pores and thereby unavailable for transport, continually 
decreases with time. 

This observation has a very important consequence, which is best 
explained with reference to the diffusion equation. There, the mass m is 
conserved and m(t) = m(0) for all times t > 0. For long times t >> ic/I2 , 
the width of the distribution u(x, t) is much larger than I, and intuitively, 
we expect that the system has 'lost the memory of the initial conditions'. 
This not only means that the system has lost memory of the initial width 
I, but also of the time that has elapsed! In other words, in the intermediate 
asymptotic limit t oo, it is not possible to discriminate between possible 
histories of the system, such as (i) u was a delta function at t = 0, or (ii) u 
was a Gaussian distribution with width 8 at time t = 0, or (iii) u was 
a Gaussian distribution with width at time t = 10. These and many 
other histories all give rise to the same distribution u(x) at sufficiently 
long times, i.e. in the intermediate asymptotic regime. Nevertheless, given 
that the governing equation is the diffusion equation, it must always be the 
case that the mass m at early times was the same as the mass measured 
in the intermediate asymptotic regime. 

A quite different situation prevails for Barenblatt's equation, with 
c 0 0. There, the initial conditions are completely undetectable in the 
intermediate asymptotic regime. The mass m(0) is, in the above sense, 
unobservable, because m changes continuously as a function of time t. 

We have encountered a situation similar to this in critical phenomena. 
There, we considered a physical system, described on the microscopic scale 
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of the lattice spacing a by a Hamiltonian 7-1. We defined an RG transfor-
mation, which resulted in a description of the system on a larger length 
scale 111, and we saw that this process could be continued to larger and 
larger length scales. We emphasised that this renormalisation process con-
stituted a semi-group, because many different microscopic Hamiltonians 
flow to the same fixed point Hamiltonian 	and thus, for a given 

, there is no unique microscopic Hamiltonian. 
As an aside, we remark that the evolution of Hamiltonians 7.1 (or more 

precisely, probability distributions exp 71) under length scale transforma-
tions is analogous to the evolution of the distribution u under transforma-
tions in time. The fixed point probability distribution exp 7.1 is analogous 
to the distribution u in the intermediate asymptotic regime. We will ex-
amine these analogies more closely later on. 

In this picture, then, the evolution of the mass m in Barenblatt's 
equation is analogous to the renormalisation of the coupling constants 
in statistical mechanics. In Barenblatt's equation, and in non-equilibrium 
problems in general, the renormalisation occurs in time, whereas in statis-
tical mechanics, the renormalisation occurs in space!' Let us now examine 
the mathematical consequences of these remarks. We begin with a heuris-
tic, but physical derivation of the anomalous dimension a. 

10.4.2 Heuristic Calculation of the Anomalous Dimension a 

Our starting point is the explicit equation for the rate of change of 
m, eqn. (10.69). The distribution u is symmetric, and thus 

atm = Escexu (X (t, c), t) . 	 (10.70) 
To a first approximation, we may suppose that the removal of mass occurs 
sufficiently slowly that u retains the form of the distribution that it would 
have in the case when mass is conservee Such an approximation would 
be expected to be valid for small values of c. Thus, we replace Ao in eqn. 
(10.8) by m(t) to obtain 

m(t) + e—x212(gt+12) u(x,t) 
V2r(ict 12) 

(10.71) 

12  The application of RG methods to Barenblatt's equation, and the possible appli-
cation to turbulence, crystal growth and other non-equilibrium phenomena is discussed 
by N.D. Goldenfeld, 0. Martin and Y. Oono, J. Sci. Comp. 4, 355 (1989); N.D. Golden-
feld, 0. Martin, Y. Oono and F. Liu, Phys. Rev. Lett. 64, 1361 (1990); N. Goldenfeld, 
0. Martin and Y. Oono, in Proceedings of the NATO Advanced Research Workshop 
on Asymptotics Beyond All Orders, S. Tanveer (ed.) (Plenum, New York, 1992). 
13  I am indebted to J. Goodman for suggesting this simplified argument. 
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Again in this approximation, the point where */ changes sign is calcu-
lated from eqn. (10.8) to be 

X(t, = 	 (10.72) 

Substituting into eqn. (10.70) we obtain 

etzm(t) e-1/2  
(10.73) 

atm(t) 	Nig 	+ i2)' 

whose solution is 

m(t) = m(0) 
12a 

(10.74) 
(id +12)a 

with anomalous dimension 

a - 	 
2rre 

Thus the long time behaviour is 

(10.75) 

m(0)/2a   e-x2 /2kt.  
(t)0/2+«

u(x, t) 	 (10.76) 

The renormalisation group makes systematic the above heuristic analysis, 
and shows that the value of the anomalous dimension is indeed correct to 
0(c). 

10.4.3 Renormalisation and Dimensional Analysis 
Consider Barenblatt's equation, starting with an initial distribution 

u(x, 0), with width and initial mass 

mQ  = J u(x,O)dx. 	(10.77) 

We have added the subscript to m to indicate that the mass is associated 
with a distribution of width Now we will redo the dimensional analysis 
of section 10.3.2, but this time taking into account the renormalisation 
discussed above. We are interested in the intermediate asymptotic limit 
II2  = ibrd 	0, which we choose to achieve here by holding t fixed 
and letting € 	0. In part, this choice is motivated for pedagogical rea- 
sons: it is closest to the procedure often used in statistical and quantum 
field theory14  Let m(t) be the mass of the distribution u(x, I) at a given 

14 See footnote 3. 
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time t > 0. Our previous argument shows that in fact there is no unique 
answer to the question: what initial condition gave rise to the observed 
distribution? For every possible initial condition with width £ there is a 
corresponding mass mt  which will give rise to the observed distribution 
at time t. In particular, we may even consider the limit of the initial con-
ditions as £ —+ 0. The observed mass m(t) must be proportional to me, 
because they have the same units, and hence they may be related by a 
dimensionless parameter Z: 

m(t) = 	 (10.78) 

We will refer to Z as a renormalisation constant. The observed mass 
m cannot depend on 1, and therefore Z must depend upon £. However, Z 
is dimensionless, and therefore cannot be a function solely of a quantity 
such as /, which has dimensions of length. To make it dimensionless, we 
take 

Z = 	 . 	 (10.79) 
(Vi-d 111 

Thus, in terms of the physically observable mass at time t, we have 

u(x,t)= Z m f(e, 77, 	 (10.80) 

where the function f is the same function as in eqn. (10.44), and we have 
defined 

e 
 

pct' 	1/Tt.  

The distribution u(x, t) is independent of C in the intermediate asymptotic 
limit, and therefore 

i 
d 

z „u = u 
„ 

d (10.82) 

where the derivative is taken with respect to £, but holding fixed m(t), 
x, c and ist. The prefactor of / is present for cosmetic reasons, as will 
become apparent. This equation, expressing the invariance of the physics 
for long times to changes in the initial conditions, is sometimes called the 
bare renormalisation group equation. The use of the word 'bare' 
designates parameters present in the original formulation, prior to renor-
malisation. In the next section, we will discuss how renormalisation re-
moves certain divergences which arise in perturbation theory; there we 
will encounter another renormalisation group equation, but this time the 
differentiation will be with respect to a parameter p, introduced during 
the renormalisation process, which has no direct physical significance. 

(10.81) 
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Evaluating the derivative in (10.82), we find that 

rOZ m f  + Zm 1 On = 0  
at ,/T-d 	Igst .11ct an 1 	• 

(10.83) 

d log Z 	Of 
dlogt f + 77—  = 0. 	 (10.84) 

Now let us take the limit 	0, and assume the existence of the limit 

dlog Z 
lira 

	

	— —2a, 	 (10.85) 
dlogi 

which defines the constant a. Our assumption is not trivial, and we will re-
fer to it as the assumption of renormalisability. We will discuss and jus-
tify this assumption shortly. Collecting together eqn. (10.84) and (10.85), 
we find 

(10.86) 

and thus 
f(C 

rh 
 E) = 772a9(C, c), 	 (10.87) 

where g is an as yet undetermined function of and E. Equation (10.85) 
implies that as /bird 0, 

N(--1
---/ 
ist) 

(10.88) 

Hence, we have found that 

m(t) m(0) ( 	2a  -14) 	as //J, tzt 0, 	(10.89)  

and 

or equivalently 

u(x,t) = 
m(t)

g(e,e) 
Nird 

(10.90) 

U(X,i) = int  )2a  9(e, E). 	 (10.91) 

Physically, we anticipate that Am < 0, and therefore that a > 0. Thus, 
we conclude on general grounds that there is an anomalous dimension at 
long times. Note that we have not yet calculated anything, whereas in the 

Rearranging gives 

8 f 
= 2ot 
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heuristic argument of the previous section, we used the specific approxi-
mation (10.71) to estimate the anomalous dimension. If an approximation 
for f were available, then in conjunction with eqn. (10.84), the anomalous 
dimension a could be determined. Finally, the observed mass at a fixed 
time t is finite, and is related to the initial mass by 

) -2a 
Mt = Zm(t) ••••0 

/
- 	m(t), as 	0. 	(10.92) 
Via 

Thus, for m(t) fixed at a given time t in the intermediate asymptotic 
regime, there is a sequence of initial conditions, parametrised by P and 
mt, which give rise to the distribution u(x, t), and in this sequence, as we 
take smaller and smaller, the mass me diverges as t-ea. 

10.44 Removal of Divergences and the RG 

In the previous section, we discussed the physical renormalisation of 
the mass in the Barenblatt equation, and showed explicitly that it arose 
from the fact that the equation is not derivable from a conservation law for 
u when € 0 0. We also saw that the initial mass m t  diverged as -+ 0. In 
this section, we will examine another aspect of this physics: the fact that 
perturbation theory about the diffusion equation, an equation which does 
conserve u, has divergent terms. These divergences are a manifestation 
of the singular nature of the physics we have discussed, and arise in 
this form because of the approximation scheme. However, the existence 
of renormalisation and anomalous dimensions is not an artifact of any 
approximation scheme, and is indeed the essential physics present in the 
original Barenblatt equation. 

We will not analyse the details of perturbation theory in this section, 
but instead, we will explain how renormalisation introduces anomalous 
dimensions. Our starting point is again dimensional analysis: 

u(x,t) = ret f (e, /be). 	 (10.93) 

This time, we will renormalise the initial mass me, with a renormalisation 
constant Z, as in eqn. (10.78), but taken as a function of Op, where µ is 
an arbitrary length scale. Thus 

	

m = Z-lmt; Z = Z (II µ, E). 	 (10.94) 

Here µ is at present unspecified (it may be the radius of the moon or 
the diameter of a proton!), and we have also included the dependence on 
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the dimensionless parameter c. The renormalised mass m is not simply 
interpreted, which is why we have presented more physical approaches to 
this topic first. It is, however, a finite mass associated with the scale p, 
and independent of t. 

Why did we choose to introduce a new length scale p rather than use 
the natural length scale 1/7d already present in the problem (as we did 
in the previous section)? The answer is essentially technical. When we 
attempt to solve Barenblatt's equation using perturbation theory, we will 
find that certain integrals diverge as we take the limit —> 0. If an inte-
gral is finite when a certain parameter in the integral (either the limits 
or integrand) is finite, but the integral diverges when that parameter is 
set to zero, then that parameter is said to be a regularisation parame-
ter. In statistical mechanics, the lattice spacing is usually a regularisation 
parameter, whereas in field theory, a regularisation parameter is often ar-
tificially introduced in order to control divergences in perturbation theory, 
using renormalisation. Thus, we may think of the initial width a as the 
regularisation parameter for Barenblatt's equation. 

The divergences in perturbation theory can be eliminated by renor-
malising the theory, as we will shortly explain. For now, we examine the 
consequences of renormalising the mass m in Barenblatt's equation. Eqns. 
(10.93) and (10.94) imply that 

Zm x u(x,t) = —,j 	 (10.95) 
Via 

The function f is singular in the limit -4. 0; it either tends towards 
zero or infinity. In perturbation theory, as we will see, this means that 
the approximation to the function actually diverges. The basic idea of 
renormalisation is to absorb this divergence into a redefinition of the 
mass m€. As we have seen, this is perfectly permissible, since mt  is not 
well-defined physically in the intermediate asymptotic regime. Thus, in 
writing eqn. (10.95), our intention is to define the renormalisation con-
stant Z in such a way that for small the term leading to the divergence 
in f is cancelled out by a term in Z. Then, proceeding to the limit, the 
distribution u remains finite as -4 0. Thus the combination of Z and f 
in eqn. (10.95) lead to 

u(x,t) = m,—F 	 (10.96) 
nt 	V Kt 1/ 

The function F is given by 

Z 	f 	--1 	= F —x 	+0(4), as —* 0, 
Vid 17-c e 	AliTe pct // 
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and contains no singular C dependence, by construction. Equation (10.96) 
is the statement that the theory is renormalisable. 

The step, which we have just performed in outline, is known as renor-
malisation. It is by no means obvious that the apparently miraculous 
cancellation of divergences in f using Z can actually occur; in general, 
more than one quantity needs to be renormalised in order that all the 
divergences can be cancelled. If a physical problem can be renormalised 
with a finite number of renormalisation constants, then it is said to be 
renormalisable. Not all problems are renormalisable, however. We will 
discuss the issue of renormalisability later, but for now, note that the 
Barenblatt equation is guaranteed to be renormalisable, by virtue of the 
rigorous proof of existence of the solutions that we seek. In other words, 
if the solution to the initial value problem did not exist, then it would not 
be possible for us to find a solution by renormalisation, or by any other 
method. The fact that there does exist a finite solution means that the di-
vergence of the terms of perturbation theory are merely artifacts, arising 
from the fact that the perturbation is around the solution to the diffusion 
equation, which does conserve u, whereas the Barenblatt solution does 
not conserve u. 

The renormalisation procedure is not obviously useful, in that it re-
moves the divergences at the expense of introducing the arbitrary length 
scale µ. Since it was not present in the formulation of the problem, it is not 
possible that u can depend upon it. Thus, we have the renormalisation 
group equation 

E mot . (10.99) 

Evaluating the derivative in eqn. (10.98), we obtain 

F mo.OF _ 0  
(10.100) 

	

d 	Ocr 

with solution 

F  (Vrce 	E ) = 	 1./7"-xct'E) . 	
(10.101) 

Here the function co is yet to be determined, and a is defined by 

d log m 
= —2a, 	 (10.102) 

d log it 

du „ 
= u, 	 (10.98) dit 

where the derivative is taken at fixed values of all the bare parameters 
rat, C, c, x, and t. Let 



312 	 10 Anomalous Dimensions Far from Equilibrium 

where m is evaluated from eqn. (10.94) in the limit 	0. Thus, the 
renormalised mass at scale µ is related to the renormalised mass at scale 
p by 	 2a 

m(P) = m(P) 

and in the intermediate asymptotic limit, we have 

m( 
t) 

)2°  so  (,€) u(x,t) = 
vict/ 	\Ara / 

(10.103) 

(10.104) 

Thus, once again we find that as t 	oo, u N  t"(1/24'). It is important 
to note that the function F is supposed to have been explicitly calculated 
by (e.g.) perturbation theory; thus eqn. (10.102) enables the anomalous 
dimension a to be explicitly calculated. 

A slightly different argument than that given above is to re-write 
eqn. (10.96) as 

Z-1(t/p)mt 
 F u(x,) t — 	

x 	
,) • 1/7t c 	v 1, rict (10.105) 

Then, the renormalisation group equation (10.98) implies that 

dlogZF+ a  OF = 0  
d log 	Oa 

so that in the limit 	0, assuming renormalisability, 

d log Z 2a  
d log µ 

and 

	

ZN 
 / µ\-2« 	

(10.108) 

(10.106) 

(10.107) 

Solving eqn. (10.106), we again find that in the intermediate asymptotic 
regime 

i 
( )

2a ( 	)2a 

	

— 	so ( 
vict it 	via 	V nt - 	• 

(10.109) 

This concludes our general discussion of renormalisation in the Barenblatt 
equation. 
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Let us now turn to the separate question of the validity of perturba-
tion theory. We have explained that the individual terms in perturbation 
theory are divergent in the limit of the regularisation parameter tend-
ing to zero. These divergences are the ones that may be absorbed into 
a redefinition of the phenomenological parameters of the theory through 
renormalisation. However, the resultant renormalised perturbation expan-
sion may not be a convergent series. Indeed, in field theory, the pertur-
bation expansion is invariably in one of the coupling constants, and can 
be shown to be an asymptotic series at best, by Dyson's argument, given 
earlier. The divergence of the summed perturbation series is an artifact of 
the expansion itself, and cannot be removed by renormalisation, because 
it has no physical significance. How good an approximation is perturba-
tion theory, then? The answer depends on how the coupling constants 
change under renormalisation. In quantum electrodynamics, the coupling 
constant g (in this case the fine structure constant) increases at short 
distances. Thus, the individual terms in the renormalised perturbation 
expansion increase, because each term is proportional to a power of g. 
Thus, perturbation theory breaks down at short distances in this the-
ory. On the other hand, in quantum chromodynamics, it turns out that 
the coupling constant g decreases at short distances, and thus the per-
turbation expansion about a non-interacting theory becomes more and 
more accurate at short distances and high energies. This useful property 
is known as (ultra-violet) asymptotic freedom. 

In the Barenblatt equation, the perturbation expansion is in the pa-
rameter €, and can be sliwn to be analytic. In field theory and statistical 
mechanics, expansions of the anomalous dimensions can be performed in 
the parameter E _ = due — d, where d is the dimension of space and cluc  is 
the upper critical dimension. This expansion is asymptotic. 

10.4.5 Assumption of Renormalisability 

Let us pause to discuss the assumption of renormalisability. In eqn. 
(10.96), the function F is written as having no dependence, because we 
have taken the limit t 	0. Thus, in the statement of renormalisability, 
before taking the limit C —> 0, we should really have 

m 	x 	t u(x,t) = —,—r , 	(10.110) 
vid 	Vid Nod vtct 

with F given by 

z (±) f yi 	i 	= P ,._x 	
s 	

(10.111) 
d' v ice 	vise vd' yist' 
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The basic idea of renormalisation is to remove the singular dependence 
on P, and therefore, if a theory is renormalisable, we require that F can 
be written formally as 

xx 
E) 

= F
(07tYTeCI'E) pct' mot' 

(TiTi) An ( Tctx 	,€) ,(10.112) 

which defines the finite functions An. The sum represents the corrections 
to the intermediate asymptotic limit --+ 0, and gives rise to corrections 
to scaling. 

The statement of renormalisability is that it is possible to construct 
Z and F satisfying eqn. (10.112) in which the limit £ 	0 is well-defined. 
Thus, the existence of the limit 

d log Z  
lim (10.113) d log 

— 2a
'  

and hence the validity of the renormalisation group equation are equiv-
alent to the assertion that the theory is renormalisable. This, in turn, 
is nothing more than the assertion that the Barenblatt equation has a 
finite solution at long times, with an intermediate asymptotic regime as 
el pct 	0. The validity of this assertion follows from the theorem of 
Kamenomstskaya, referred to earlier. 

10.4.6 Renormalisation and Physical Theory 

Another way of interpreting the existence of a solution is that a well- 
defined solution exists in the intermediate asymptotic limit, with a finite 
mass m, even as 	0. In other words, a description of the system 
is possible even when the regularisation parameter C has been taken to 
zero: the phenomenology at late times is insensitive to the behaviour 
at short times. Moreover, renormalisability implies that a phenomeno-
logical description of the system exists, because if the theory were not 
renormalisable, one would not be able to define a renormalised mass as 
I—► 0.  

What is a phenomenological description of a physical system? In con-
structing physical theories, we always use a certain level of description. 
Thus, in describing the long wavelength behaviour of a magnet, we write 
down equations for the coarse-grained magnetisation. In describing the 
motion of a fluid, we write down equations of motion for the velocity 
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field v(r, t); however, the velocity field is actually a coarse-grained veloc-
ity field, defined by averaging the velocity of many particles in a small 
volume element in the neighbourhood of the point r. In these and other 
examples, the variables of interest are always defined with respect to some 
coarse-graining process. In the two examples above, the coarse-graining 
was in space, so that phenomena below some scale A-1  are subsumed 
somehow into the equations for the coarse-grained variables of interest. 
Often, A-1  is a regularisation parameter for the theory, as we have seen 
in critical phenomena, for example. In non-equilibrium problems, such as 
the Barenblatt equation, the coarse-graining is in time: no information is 
available on the system for the initial time when the width of the distri-
bution u was Q. Again, a is a regularisation parameter in this example. 

In a phenomenological description of a system, we try to describe the 
behaviour solely in terms of the coarse-grained variables, without refer-
ence to the microscopic physics on scales shorter than the coarse-graining 
length. Inevitably, the description of the coarse-grained variables intro-
duces other parameters: for example, in a magnet, the parameters of the 
Landau free energy or in a fluid, the coefficient of viscosity. These phe-
nomenological parameters are determined by the microscopic physics: for 
example, the viscosity of a fluid may be calculated, with some approxima-
tions, from kinetic theory. A successful phenomenological theory contains 
only a finite number of such parameters (the smaller the better), and 
does not attempt to calculate the phenomenological parameters. These 
are taken to be inputs to the theory. 

How does a phenomenological theory change when the microscopic 
physics is altered, for example by varying the regularisation parameter 
A-1? From the above, the only possible change can be in the values of 
the phenomenological parameters. If new phenomenological parameters 
have to be introduced whenever the microscopic physics is changed, then 
the theory is not, by definition, phenomenological. In this sense, then, a 
successful phenomenological theory should be insensitive to changes in 
the microscopic physics, although the phenomenological parameters may 
change. 

We conclude from the above discussion that only a renormalisable 
model can generate a successful phenomenology. Failure of renormalis-
ability would imply that one requires an infinite number of parameters 
to obtain a well-defined finite description of the physical system of in-
terest, in the limit of small regularisation parameter, and thus, that a 
phenomenological description of that physical system is not possible. 

An interesting corollary of this discussion is that all our physical the-
ories are phenomenological. Even the highly successful theories of high 
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energy physics, such as the electroweak theory and quantum chro-
modynamics, are phenomenological, precisely because they are renor-
malisable. They do contain phenomenological parameters, and are per-
fectly self-consistent, renormalisable theories. Thus, they do not predict 
their regime of applicability. Only by doing experiments can we determine 
if there are phenomena which fall outside this description. On the other 
hand, non-renormalisable theories, such as Fermi's four-fermion theory 
of the weak interaction, are insensitive to changes in the regularisation 
parameter only within some range. For example, it turns out that for 
processes at energies less than about 300 GeV, the four-fermion theory 
gives a reasonable description, whereas for higher energies, new physics 
is encountered, which is not described by the theory. The fact that the 
theory is not renormalisable is an indication that it will have a limited 
range of validity. 

Why do we seek renormalisable theories of physics? Historically, the 
main reason has been pragmatism: one wants a theory which will always 
give sensible (i.e. finite) results. However, it is also clear that there is 
no guarantee a priori that the predictions of such a theory will always 
agree with experiment. A renormalisable theory will show no signature 
of the fact that it may be being used in a physical situation where it is 
inapplicable. 

/0.4.7 Renormalisation of the Modified Porous Medium Equation 

We now move on from Barenblatt's equation, and briefly discuss the 
renormalisation15  of the modified porous medium equation in d dimen-
sions, which we will write in the form 

Otu(r,t)= Disild u(r,t)1+n , 	 (10.114) 

with 
D=  J1 	Otu < 0; 

11-E   Otu > 0. (10.115) 

where € > 0. 
The new element here is that we will find that there are two anoma-

lous dimensions in the solution, although they are related by a scaling law. 
This is consistent with the fact that it is still only the mass which becomes 
renormalised. The intrinsic interest of the porous medium and modified 
porous medium equations is that they exhibit propagating fronts, in con-
trast to the diffusion and Barenblatt equations, whose solutions exhibit 
exponentially decaying tails at spatial infinity. 

15  L.-Y. Chen, N.D. Goldenfeld and Y. Oono, Phys. Rev. A 44, 6544 (1991). 
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We begin by using the results of exercise 10-1 to write down the 
general form of the solution to the modified porous medium equation: 

t 	r 
u(r,t) = (mt

m
node (minty (mew 	• 	(10.116) 	, 	,€ ) 

The result of exercise 10-1 implies that we need to/  introduce the renor- 
malised mass m = Z-1(//µ,€)mt. The statement of renormalisability is, 
then, that in the limit' C -4 0, 

(Zm)  
(10.117) u(r,t) - 

[(Zm)ntre 	[(Zm)nle' [(Zm)nt]e  

r 	 (10.118) (mnm  ode F  onnoe (mnoo 

where F is to be determined. Let the first argument of F be denoted by e 
and the second argument by a. Then the renormalisation group equation 
is 

where 

F 
ae— 

O 
 ba—  

OF = cF, 
Oe 	'Oa 

(10.119) 

a = 7n0; b = 1+ n97; c = (1- nd0)7, 	(10.120) 

and the anomalous dimension is 

lim 
dlog Z 

(10.121) 
d log µ 

The solution is obtained by the method of characteristics, which is 
explained in the appendix to this chapter, and is 

F(e,cr,c)= crOco (0516 ,c) , 	 (10.122) 

where co is to be determined. Hence, we find that the long time behaviour 
must be of the form 

with exponents 

u(r, t)N t-(d9-1-a'q" 	
r 

 , 9 , 

79(1 - ndO) 
a = 

1 + n70 

Q=-1+079  
= n702  

1+ 070 

(10.123) 

(10.124) 

(10.125) 
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These exponents are not independent, but satisfy a scaling law, reflecting 
the fact that there is only one anomalous dimension because only one 
renormalisation constant was required: 

(1 — nd0)  # = 0. a -I- n0 (10.126) 

10.5 PERTURBATION THEORY FOR BARENBLATT'S 
EQUATION 

We now proceed to the formal perturbation theory analysis of Baren-
blatt's equation in one dimension, written in the form 

Otu(x,t) = DtcOlu(x,t), 	(10.127) 

with 
{ D = 	1/2 	Btu > 0; (10.128) (1 + c)/2 Otu < O. 

For convenience, we will choose units so that the numerical value of K is 
unity, and we will drop it from the equations henceforth. 

10.5.1 Formal Solution 

Let X(t,c) be the positive value of x where Otu(x,t) = 0. Then, we 
can write Barenblatt's equation as 

[at - 2 a2, ti(x, t) = 20(X(t,c)— Ix1)41/(x,t), 	(10.129) 

with a general solution of the form 

u(x,t) = L.dy G(x — y, t) u(x, 0) 	 (10.130) 

c°  + 	
0 
 ds l dy G(x — y, t — s) 0 [—osu(y, s)] 4u(y, s), 

4 	-CO 

where G is the Green function 

G(x, t) = 1  e.--z2 
• V2irt - 

The idea behind solving Barenblatt's equation by perturbation theory is 
that when c = 0, the equation is the soluble diffusion equation; therefore, 

(10.131) 
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uo(x,0) — m0  a x2/212 (10.133) 
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it seems reasonable that, for small c, the solution is in some sense close 
to that of the diffusion equation. In fact, this point of view is slightly 
naive, as we have already seen. Even for small c, there is a qualitative 
difference between the diffusion equation and Barenblatt's equation:' one 
respects a conservation law, whereas the other does not. Nevertheless, we 
will see that it is the case that the shape of the solution to Barenblatt's 
equation is not qualitatively different from that of the diffusion equation. 
The term proportional to c in Barenblatt's equation is an example of a 
singular perturbation16  to a solved problem, where the behaviour for 
E = 0 is completely different from the behaviour in the limit B —+ 0. A 
physical example of a singular perturbation is the operator —(h2 /2m)0 
in SchrOdinger's equation for a particle of mass m, where h is Planck's 
constant: the behaviour of a system when h = 0 is quite different from 
that when h is very small. 

10.5.2 Zeroth Order in c 
Our perturbation theory proceeds by assuming that the solution can 

be written in the form 

u(x,t) = uo(x,t)-1- cui(x,t)-F c2u2(x,t) 0(E3). 	(10.132) 

We assume that un(s, 0) = 0 for n > 1. The algorithm is to substitute this 
form of the solution into the formal solution (10.130) and match powers of 
E on both sides of the equation. For simplicity, we will take as our initial 
condition the Gaussian profile 

where mo is assumed to be a constant. Then the zeroth-order solution is 
just 

MO  (  X2  
Uo(X,1)  

V27(t +12) exp 2(t + 0) 
(10.134) 

16 See (e.g.) C.M. Bender and S.A. Orszag, Advanced Mathematical Methods for 
Scientists and Engineers (McGraw-Hill, New York, 1978); J. Kevorkian and J.D. Cole, 
Perturbation Methods in Applied Mathematics Applied Mathematics Series, vol. 34 
(Springer-Verlag, New York, 1981). 
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10.5.3 First Order in c 
To obtain the equation satisfied by the first order correction, we iterate 

by substituting u0  into the right hand side of the formal solution (10.130) 
to give 

[ot-10d ui(x,t) = 10(X(t, 0) - IxDON0(x,t). 	(10.135) 
22 

We can simplify the right hand side by noticing that 

2
OIr,t0(x,t) = Otu0(x,t) 	 (10.136) 

1 u0(x,t)  ( x2 	1.) 
(10.137) 

2 ti-i2  
Thus, the solution to eqn. (10.135), taking into account the initial condi-
tion for u1, is 

1It  jx( 8,0 ui(x,t)= - 	ds 	dy G(x - y,t s) u°(Y' s) 	y2  
2 0 	 (t-x(s,o)

1) . 

(10.138) 

10.5.4 Isolation of the Divergence 
This expression for ul  is divergent as i/Vi -+ 0. Here is one way of 

isolating this divergence: we keep t finite and send to zero. From eqn. 
(10.137) it is apparent that 

X(t, 0) = 	 (10.139) 

and thus 
to(x,t) = 

m0 	t 	ds dye
-(x-02120-s) e-y212(31-12) y2 

1) • 

2 A 8 +12 Oir(t - s) 	V27(s 	12)3 + 12 
(10.140) 

(10.141) 

- 1) 
(10.142) 

' 

1 ds e-"2/2(w2  

2 
- x) I2(t - sd. 

8  

/2  

Now we make the substitution 

w - 

which gives 

nza 	t 
-1-1
ds 

 2  .0

1  ui(x,t) = I 
3 4r 0  

x exp (w Nr 
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We are interested in the behaviour at small C. The integral f ds/(s /2) 
looks suspiciously logarithmically divergent (due to the lower limit) as 

-> 0, but what about the rest of the integral? In fact, the rest of the 
integral is regular in The only other place where enters is in the 
exponential factor, and there is nothing singular about this as -> 0. 
So, we can drop the factor of from the exponent, knowing that the 
correction is of OM, and therefore regular as -> 0. Now let us examine 
the behaviour of the integrand at small s, which is the important region 
as -> 0. For s 	0, there is no new singular behaviour other than the 
logarithmic divergence from the first term in the integrand. Thus, for the 
purposes of isolating the singularity only, we can set s = 0 in the terms 
of the integrand to the right of (s 12)-1. Finally, then, we write u1 , in 
the limit -> 0, as the sum of a singular part ul and a regular part ti: 

ui(x,t) = 74(x,t)-1- tqx,t), 	 (10.143) 
where 

mo12t t  ds 	, a (10.144) •4(x,t) = —,e 	w e-w2/2(w2  - 1), 
47,/t 	o s + /2  -1 

and 
771.0 ds 	e--(wV;-x)212(t-8) e-2212t 1 

tqx,t) =72.- Jo
t 

s + z 
.2  I dw 	 

—1 	A/F-79 	Vi (10.145) 

x e-"2/2(w2  - 1) + 0(1). 
Now let us evaluate the integrals appearing in 14. 

1 
dw(w2  — 1)e—w2 /2  = -2e-1/2, 	(10.146) 

ui
CI e  x2 /2t 

= — 2e-1/2  log 
2  4r

M

1/i 	(10.147) 
1  

(10.148) - --,.-- —) . 12 Ore
uo x,t)log ( 

 
This is the divergence of perturbation theory, advertised in section 10.4.4. 
Our complete expression 

Ino e-r2/2t U(X, t) = 

to this order in c 

- 	log (--t  

is thus, as 

0(E2)] 
0, 

+ 0(i, e), (10.149) 
VS-rt tae   

where the term in square brackets is divergent as -> 0, and the terms of 
0(1,e) are regular in this limit. In the remainder of the calculation, it is 
important to recognise that we have only made a computation accurate 
to 0(e), and at this stage, we can say nothing about higher orders in 
perturbation theory. 

L1 
and thus, as -> 0,14 is given by 



322 	 10 Anomalous Dimensions Far from Equilibrium 

10.5.5 Perturbative Renormalisation 

The next step is to remove the divergence by renormalisation of the 
mass mo, as explained in section 10.4. Note that in proceeding blindly 
from our perturbation theory, we have at no stage had to confront the 
fact that the mass is not conserved. Only now are we forced to recognise 
this feature of the physics, by the divergence of perturbation theory. 

According to renormalisation theory, we introduce the renormalised 
mass 

m = Z-1(11 it,c)mo 	 (10.150) 

so that 

Zm e_x2/2t  [1  
fiTre 12  

u(x, t) = 

	

	 log (—) O(E) + 0(i, c). (10.151) 
\57—rt  

In applying renormalisation to our perturbation theory, the best that we 
can hope for is to be able to remove the divergences encountered at each 
order in perturbation theory. Since we have no information about pertur-
bation theory above 0(e), we can only remove the divergences that we 
have encountered at 0(e). Thus, we assume that we can expand the renor-
malisation constant Z in a power series in c, and choose the coefficients 
to remove the divergence in the bare perturbation theory, i.e. 

00 

Z .1+ E anyho En. 	(10.152) 
n=1 

The coefficients an  are determined order by order in c to make u(x4) 
finite. To first order in c, we choose 

1
Ire 

, (Cu 
) 

? 
ai (O 	

2 

	

s) = 	log 	, 	(10.153) 
/  

where C1  is an arbitrary constant. This is the most general form of al 
which will cancel off the divergence at 0(e), and thus 

2c , 
Z=1+ T

— log(
(Yip  
—) . 	 (10.154) 

VIe 

Indeed, substituting this into eqn. (10.151), we obtain 

m 	 iA2  
2rt

e—x2/2t u(x, t) = 	 [ 
V2re 	 •

1 + 	log (C—z—) + 0(e2 )] 

	

x [1 —
57

c
re 	2 

 

	

log 	) + 0(c2)] + 0(1,e). 	(10.155) 
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The cancellation of the divergence occurs because 

c 	log( C  112142  
TTe 	

) + 0(€2)] x [1 - -s -re  log (-I-it  + 0(E2)] 
r 

= 1 - --E  [log (-9 + log ( 
2-77 	/2 	C1/12) +0(c) * 	

(10.156) 
12 

As promised, after renormalisation, in the t -4 0 limit, the singular de- 
pendence one has been removed. 

We can, at this stage, use our general RG considerations, as expressed 
by eqn. (10.107), to calculate the anomalous dimension a: 

1 dlog Z  
a - 

2 dlog 	
(10.157) 

(10.158) 

(10.159) 

Although this is our desired result, let us continue to see what sense we 
can make of our renormalised expression for u, eqn. (10.155). The formula 
does not look very promising: it contains an arbitrary length µ and an 
arbitrary number C1. However, we can single out one member of this 
family of solutions by insisting that at the origin at some specified time 
t., the distribution had the value Q(t*). Then, the corresponding solution 
u* is 

u*(x,t) = Q(e)r e-x212t 	log t 
1 
• 

7gre 	
) + 0(e2d * (10.161) 

Note that by working only to 0(c), the arbitrary constant C1  has dis-
appeared, having been pushed to 0(0). If we had worked to 0(c2), we 
would have been able to push the arbitrary constants to 0(€ 3). Renor-
malisability requires that a unique solution exist to the problem, and so 
in a renormalisable theory, all constants introduced during the renormal-
isation procedure C1, C2, etc. can be pushed to arbitrarily high order in 
E. This is essentially a statement of perturbative renormalisability. 

How useful is the perturbation expansion for a? Dyson's argument 
does not apply in this case, so there is no reason a priori to expect the 

1+ 

E/15Te  
1 + alog(Cittii)M7re 

= 	
C 	

+ 
0(c2). 

u*(x,t) = Q(e)u(x,t) 
(10.160) 'u(x,0)' 

which gives the so-called renormalised perturbation expansion 
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expansion to be divergent. In fact, it can be shown17  that a is an analytic 
function of E. 

10.5.6 Renormalised Perturbation Expansion 

Of what use is the renormalised perturbation expansion? The arbi-
trary time t* is a reflection of the arbitrary length it introduced in the 
renormalisation procedure. For times t of order t*, the expansion may 
give a reasonable estimate of the behaviour of u*(x, t). For times t much 
larger or smaller than t*, the logarithmic terms in the perturbation series 
are not small, however, and it may be expected that the perturbation 
expansion is poor. On the other hand, since t* is arbitrary, we may ad-
just it to be close to or equal to any desired time (in the intermediate 
asymptotic regime); this is equivalent to the fact that u* cannot depend 
on t*. Varying t* also changes Q, and in such a way as to compensate for 
the explicit t* dependence in u*. Thus, we may write the renormalisation 
group equation in the form 

du* 	au* dQ Ou* 0  
dt* = Ot* + dt* OQ -  ' 

	(10.162) 

We can evaluate to 0(E) all the partial derivatives in eqn. (10.162) from 
the renormalised perturbation expansion and thus deduce how Q varies 
with t*: 

(10.163) 

Q(t) , t-112+*(c), 	(10.164) 

with a(E) given by eqn. (10.159). The final step is to substitute this func-
tional form into the renormalised perturbation expansion (10.161) and set 
t* = t, showing that the long time behaviour of u is indeed of the form 

e-x2/2t 
u(x,t) "-, tl/2+a(c)  + 0(c). (10.165) 

17  D.G. Aronson and J.-L. Vazquez (manuscript in preparation); other rigorous results 
are presented by S. Kamin, L.A. Peletier andJ.-L. Vazquez, Institute for Mathematics 
and its Applications preprint number 817 (1991). 

t 
dQ 

= —QR+ kr,  0(c2)1 di .  

Integrating, we obtain 
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10.5.7 Origin of Divergence of Perturbation Theory 

We conclude with some remarks about how RG has improved a per-
turbation expansion, and show that it is the intrinsically singular nature of 
the Barenblatt equation which leads to the divergence of the terms in per-
turbation theory. The bare perturbation expansion result, eqn. (10.149), 
stated 

u(x, t) = MO 	2  I2t [1— 	6  log (Tit  ) OW)] + 0(i, E). (10.166) 
Aigrt 	Nffie 

The renormalisation group arguments showed that the quantity in square 
brackets, which we will call 1 + T, is the first two terms in the expansion 

1 	r 	exp [— — ige log (--) 0(c2)1 
N-r 	

(10.167) 

(c)  calTe-1-0(c2 ) =  
(10.168) 

In effect, the RG showed that at each order n in perturbation theory, there 
must be a contribution Tn/n!, which when summed, leads to (10.168). If 
we had used perturbation theory to O(E2) we would find a term T2/2! 
plus a correction. This correction would lead, via the RG argument to 
the 0(E2) term in the anomalous dimension a. 

Lastly, note that although the term r in the perturbation expansion 
is logarithmically divergent as I —> 0, the summed expression (10.168) 
exhibits quite different singular behaviour, which is not even divergent 
when c > 0. This singular behaviour is precisely that of eqn. (10.76), and 
from the considerations of section 10.4.2, is an intrinsic part of the physics 
of Barenblatt's equation. 

10.6 FIXED POINTS 

The RG that we have presented so far in this chapter grew histori-
cally from the attempts to renormalise field theories, such as quantum 
electrodynamics and Landau theory. It is not obviously connected with 
the picture of the RG described in chapter 9. In this section, we will 
determine the long time behaviour of Barenblatt's equation by defining 
an appropriate renormalisation group transformation, and seeking fixed 
points. There are several different ways to do this, but by proper choice 
of the RG transformation, the fixed point can be chosen to be the self-
similar solution governing the intermediate asymptotics. The fixed point 
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structure of Barenblatt's equation is rather simple and uninteresting, com-
pared with the possibilities that occur in critical phenomena, but other 
equations may present more interesting possibilities. 

10.6.1 Similarity Solutions as Fixed Points 

Let us define the RG transformation Rb,it, [u(x, 0] on the function 
u(x, t) at some arbitrary time t # 0. After the transformation has been 
performed on u(x, t), one obtains the function u'(x, 0. One should think 
of the t argument in these functions as being a label. The RG transforma-
tion depends on two parameters b and /5, and is specified by the following 
three steps: 

(1) Evolve the function u(x4) forward in time to t' = bt, using the 
desired equation, in this case Barenblatt's equation, represented 
formally by a time evolution operator N[u]. Call the result u(x, t'). 

(ii) Rescale x by defining x' = b4x. 
(iii) Rescale u by an amount Z(b) so that u'(0, t') = u(0, t). 

Thus, for each x value, an initial time t, and a time evolution operator 
N, we construct the number u'(x, t) from the initial set {u(x, t); —co < 
x < oo} by 

u'(x, t) = Rb,o [u(x, t)] 

	

to 
x' 

bt). 	
(10.169) 

Z(b)uku   
The reason that this RG transformation is potentially useful is that the 
fixed points of the transformation are the self-similar solutions. Let us see 
this formally. The transformation forms a semi-group: 

(10.170) RaokRbok = Rabok 

and this implies that the rescaling factor has the functional form 

Z(b) = 	 (10.171) 

for some y. Equivalently, the exponent y is defined by 

d log Z 
y — 

	

	 (10.172) 
dlog b • 

For an arbitrary value of q5, there may not exist fixed points of the RG 
transformation. Let us now suppose that we have chosen a value for which 
a fixed point exists. The fixed point is a function te which maps into itself 
under the RG transformation: 

	

u*(x,t) = b—vu*(b#x,bt). 	 (10.173) 
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Setting b = 1/t, we have 

u*(x,t) = tvu* (xt-'6 ,1) , 	 (10.174) 

which is indeed of the self-similar form. Note also the similarity to the 
static scaling hypothesis. 

The RG transformation step (1) is the analogue of the coarse-graining 
in statistical mechanics, and may be implemented approximately in many 
different ways, including numerically. For purposes of illustration, let us 
use the renormalised perturbation expansion (10.161) as our approxima-
tion. Then we find that 

Z(b) = b-112 (1 log b) 0(e2) (10.175) Nfire-  
and 

1 y = — (— 
c 0(c2)) . (10.176) 

v2ire 2 

Substituting into eqn. (10.174), we find that the fixed point function be-
haves at long time as 

u* •••• t-(1/2+a(c ))  f (xt-95 ), 	 (10.177) 

where the function f is to be determined, as is the value of 0. One way 
to determine 0 is to consider one iteration of the RG transformation on 
our usual Gaussian initial condition (10.4). We find 

u(b4' x,bt) = Aob--112 exp  (_b20 x2 12bt) [1 	
€
, 	log b OW)]. 

V2re 
(10.178) 

Only if 0 = 1/2 can repeated iterations possibly give a non-trivial fixed 
point: for 0 > 1/2, repeated iterations tend to zero for x # 0, whereas for 
4. < 1/2 the function tends towards a constant. In conclusion, we have 
found the same result as that found using the method of the previous 
section. Although we have presented the RG transformation as a discrete 
transformation, it is also possible to formulate it as a continuous transfor-
mation. The discrete form is the more useful for numerical applications, 
however, and has proven to be a more efficient way of determining long 
time behaviour than direct numerical integration of equations of motionP 

18  L.-Y. Chen and N.D. Goldenfeld, unpublished. 
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10.6.2 Universality in the Approach to Equilibrium 

The use of RG methods to study non-equilibrium phenomena is a 
subject still in its infancy. Nevertheless, it is appropriate to conclude this 
chapter with a few remarks about the few existing applications. The key 
point is that whenever an intermediate asymptotic regime is controlled 
by an RG fixed point, the dynamics there reflects the local behaviour of 
the RG transformation; thus the dynamics in the intermediate asymptotic 
regime is universal. Different physical systems with different equations of 
motion may be driven to the same fixed point, and therefore exhibit iden-
tical asymptotic behaviour. A corollary of this picture is that for such 
processes, it is not necessary to solve exactly the equations of motion if 
one is interested in the universal behaviour. In particular, for computa-
tional studies, one may use a minimal model of the dynamics, which 
is in the same universality class as the system of interest, but which is 
computationally more efficient. In practice, this means making two as-
sumptions: first, that the behaviour of the system of interest does indeed 
reflect an RG fixed point, and second, that the efficient computational 
scheme which one may devise is actually in the same universality class 
of the system of interest. Computationally efficient methods, motivated 
by RG considerations have been used to study phase separation19  and re-
lated pattern formation problemsr block copolymersr crystal growth22  
and the kinetics of the superconducting transitionr Algorithms based 
on rescaling, but not exploiting fixed points, have also been applied to 
study the finite time blow-up of solutions to such equations as the three-
dimensional Euler equationel the non-linear Schrodinger equation
model equations for combustionr 

10.7 CONCLUSION 

Certain physical problems have asymptotics that cannot be de
from dimensional considerations alone. The RG shows how anom

19  A. Shinozaki and Y. Oono, Phys. Rev. Lett. 66, 173 (1991). 
20  See the review by Y. Oono and A. Shinozaki, Forma 4, 75 (1989). 
21  M. Bahiana and Y. Oono, Phys. Rev. A 41, 6763 (1990). 
22 F. Lin and N.D. Goldenfeld, Phys. Rev. A 42, 895 (1990). 
23  F. Liu, M. Mondello and N.D. Goldenfeld, Phys. Rev. Lett. 66, 3071 (199
24 A. Chorin, Comm. Pure Appl. Math. 34, 858 (1981). 
25  M.J. Landman, G.C. Papanicolaon, C. Sulem and P. Sulem, Phys. Rev. A 3

(1988). 
26 M. Berger and R.V. Kohn, Comm. Pure Appl. Math. 41, 841 (1988). 
25  and 
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dimensions arise in these problems, and provides the possibility of com-
puting the anomalous dimensions. The alternative to the RG approach 
is to guess the form of the asymptotics, in which case, the anomalous 
dimensions are non-linear eigenvalues of a boundary value problem. The 
RG not only applies to field theories and statistical mechanics, but to 
other areas of physics, including non-equilibrium phenomena, which are 
not formulated as functional integrals, and for which there is apparently 
no notion of physical scale invariance. 

Divergent terms may arise in perturbation theory, whenever one is, in 
some sense, expanding about the wrong solution. In critical phenomena, 
the wrong solution is actually mean field theory, whereas in Barenblatt's 
equation, the wrong solution is that of the diffusion equation. In a renor-
malisable theory, the divergent terms are artifacts of the perturbation 
theory, and can be removed by renormalisation. The divergences reflect 
the singular nature of the problem, which is, however, intrinsic. 

APPENDIX 10 - METHOD OF CHARACTERISTICS 

This appendix briefly summarises the method of characteristics, 
which is a way to find the general solution of a quasi-linear first order 
partial differential equation. For simplicity, we will describe the case where 
a variable u is a function of two independent variables x and y, and 
satisfies the equation 

a(x,y,u)u 	b(x,y,u)uy  = c(x, y, u), 	(A10.1) 

where a, b and c are given functions, and as a boundary condition u is 
specified on a curve C in (x, y), subject to some technical constraints, 
which we will mention at the end. The notation uz  means Ozu, etc. 

The crucial observation is that the solution can be written in three 
dimensional space as z = u(x , y), which describes a surface known as the 
integral surface. Then the original PDE (A10.1) has a useful geometrical 
interpretation, as follows. Consider the function 

F(x,y, z) = u(x, y) — z = 0, 	 (A10.2) 

for which dF = 0, and hence 

(us, uy, —1) • dr = 0. 	 (A10.3) 

This shows that the vector (ui, uy, —1) is a normal to the integral surface; 
but eqn. (A10.1) implies that (uy, uy, —1) is also perpendicular to (a, b, c). 
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Therefore, the vector (a, b, c) is tangential to the surface. Hence the curve 
r(A) parameterised by the distance along the curve A, and given by 

dr 
= (a(x,y,u),b(x,y,u),c(x,y,u)) 	(A10.4) as 

lies in the integral surface. 
Our strategy for constructing the desired solution, the integral surface, 

is to start on a point x0, yo, zo  on the curve C and solve the so-called 
characteristic equations 

dx 	dy 	dz 
= a(x' z);  TA.  = 	b(x, z); 	— = c(x ,y , z) 

dA 	
(A10.5) 

to obtain the characteristics 

x = x(xo, Yo, zo; A); y = Y(xo, Yo, zo; A); z = z(xol Yo, zo; A). (A10.6)  

This characteristic is a curve starting at xo, yo, zo  and lying in the integral 
surface. Now move to a point on C adjacent to xo, yo, A)  and solve for the 
new characteristic. In this way, moving along C, we can sweep out the 
integral surface as a one parameter family of characteristics, the parameter 
being the one which generates the curve C. Note that it is often useful to 
write the characteristic equations in the compact form 

dx_dy dz = 	= an. 	(A10.7) 
a b c 

Example 1: 

Solve the equation 
uux 	uy  = 1 	 (A10.8) 

with initial data parameterised by the variable s on a curve C with x = 
y = s and u = s/2, for 0 < s < 1. 

Solution: the characteristic equations are, with z = u 

dxdy , dz — = u; 	= 	— = 	(A10.9) dA 	dA 	dA 

with initial conditions x(0, s) = s, y(0, s) = s and z(0,$) = u(0,$) = s/2. 
Solve the equation for z and y to obtain 

z=u=A+s12; y=A+s. 	(A10.10) 
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Now solve the equation for x to obtain 

1 	1 x 
= 2 

—A-  + 
2
—sA s. (A10.11) 

The solution can now be written down by inverting the equations for x 
and y to give A = A(x, y) and s = s(x, y), and then substituting these 
expressions into eqn. A(10.10), yielding u = u(x, y). 

Caveats: 

Finally, two caveats about the initial data. It should be clear from the 
geometrical construction of the solution that if the initial data lie on a 
characteristic, then the solution to the characteristic equations will not 
sweep out the integral surface. Secondly, the initial data must not be 
specified on the curve dy/dx = b/a; such data would imply that we could 
not perform the inversion step above and obtain A and s as functions of 
x and y. 

Example 2: 

Solve the quasi-linear eqn. (A10.1) and determine the form of f(e,77), 
when a, b and c are constants. 

Solution: introduce the dilation parameter t a-  exp A. Then the char-
acteristic equations are 

The solutions are 

de _ dr, df dt 
ae 	cf t (A10.12) 

= ta—(.5);  i = tb7j(s); f = tc7(s), 	(A10.13) 

where Z(s), 17(s) and 7(s) are the values of these quantities at t = 0, i.e., 
on the initial data. To determine f(e,77), we need to eliminate s and t in 
favour of and i from the last equality in eqn. (A10.13). The result is 

f(e,n) = ncibF (45,7 	 (A10.14) 

where F is a function to be determined. 
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EXERCISES 

Exercise 10-1 

Using dimensional analysis, we will construct a similarity solution for the 
porous medium equation 

Btu = KAd (u1+1 

where Ad is the Laplacian in d-dimensions, whose radial part is 

1 a  ed-ia„.) 
14-1"'  

and n is a constant, which may be taken to have the numerical value 1, 
without loss of generality. 
(a) Show that the radially symmetric similarity solution must be of the 

u(rt) - Q  
(Q t) 

f (Q9)0) ' 
r 

where 0 E.--  (2 + nd)-1, and Q = f u(r,O)ddr. 
(b) Hence show that 

f(e)  = [2(:* (a)  _ e2), 	6; 

0, 	 > 
where e rl(Q7'1)9  and 6 is to be determined. • 

(c) Show that Q is conserved, and hence determine 6. 
(d) For n = 0, the porous medium equation reduces to the diffusion equa-

tion. For n # 0, the porous medium equation exhibits a propagating 
front, as we have shown, whereas the diffusion equation has a tail 
stretching all the way to infinity. Show that in the limit n 	0, the 
solution in (b) and (c) crosses over smoothly to that of the diffusion 
equation. 

(d) Show that Q is not conserved by the modified porous medium equa-
tion. 

Exercise 10-2 

This question concerns the calculation of the anomalous dimension a of 
Barenblatt's equation, as discussed in section 10.3.3. 
(a) Solve eqns. (10.58) and (10.59), and show that a and 6 are given 

implicitly by the transcendental equations 

D2c,+2(6) = 0; F(-a - 1,1/2,d/2(1 + E)) = 0. 

form 
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Here Da(z) is the parabolic cylinder function of degree a and F(a, b, z) 
is the confluent hypergeometric functionr 

(b) Calculate the anomalous dimension for several values of c ranging from 
(e.g.) 0.001 to (e.g.) 0.5, using either the implicit equations derived 
above or the shooting method discussed in the text. 

(c) Find the limiting value of da/d€ as E 0, and compare with the RG 
value of 1/V27;. You can also obtain this result analytically from the 
implicit equations derived in (a). 

(d) Show that the analysis of the long time behaviour of the diffusion 
equation and Barenblatt's equation given in the text for Gaussian ini-
tial conditions can be extended to arbitrary initial conditions which 
are sufficiently localised. Investigate the behaviour for initial condi-
tions with power-law decay at infinity. 

A 	r2  + h(r,t) , 	  
[2(ist)112+48+0(0) 16ist 

where the function y+ is defined to be y when y > 0 and 0 when 
y < 0. 

Exercise 10-4 
This question illustrates how anomalous dimensions may arise even in 

linear problems. We consider the flow of an incompressible fluid past an 
infinite wedge with opening angle 2a; the wedge is infinitely wide in the 
z-direction, so that the flow problem may be considered to be two dimen-
sional, in the x — y plane, as shown in the accompanying figureP The flow 

27  M. Abramowitz and I.A. Stegun, (eds.) Handbook of Mathematical Functions 
(Dover, New York, 1970). 
28 L.-Y. Chen, N.D. Goldenfeld and Y. Oono, Phys. Rev. A 44, 6544 (1991). 
29 G.I. Barenblatt, Similarity, Self-Similarity and Intermediate Asymptotics (Consul-

tants Bureau, New York, 1979); N.D. Goldenfeld and Y. Oono, Physica A 177, 213 
(1991). 

Exercise 10-3 
This question concerns the long-time behaviour of the modified porous 
medium equation. 
(a) Solve the renormalisation group equation (10.119) for the modified 

porous medium equation (10.114) and (10.115), using the method of 
characteristics, and thus derive eqn. (10.122). 

(b) Find the long time behaviour of the height h(r, t) of a groundwater 
mound (r is radial distance from centre of mound), by renormalising 
the modified porous medium equation for n = 1 and d = 2, and show 
that28  
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U0  

Figure 10.2 Flow of an ideal incompressible fluid past a wedge, as in exercise 10-4. 

field v has a potential 0, with v(r) = V0(r), and due to incompressibility 
satisfies V • v = 0. Well before impinging on the wedge, the fluid has 
velocity v = (U0,0). 
(a) What are the boundary conditions for 0 on the sides of the wedge? 
(b) 0 satisfies Laplace's equation. Use cylindrical polar coordinates (r, 0) 

and dimensional analysis to write down the form of the solution for 0. 
Hence show that it is not possible to satisfy the boundary conditions 
in (a). 

(c) Resolve this paradoxical situation, by considering the regularisation 
where the wedge is allowed to have a finite length Lo, and seeking a 
solution valid in the region where r1L0 —+ 0. Show that a renormali-
sation of the velocity U0  at infinity implies that this problem has an 
anomalous dimension A, leading to a potential of the form 

ri+A  cos [(A + 1)0 + 7(4 • 

Use the boundary conditions to determine exactly A and y as functions 
of a. 

(d) Now use perturbation theory to solve the problem. For a = 0, we 
expect A = 0. Thus, we try a perturbation theory about a = 0, using 
the complex velocity field w = vx  — ivy. Use conformal mapping to 
show that the bare complex velocity is 

w(z) = Uo -I- a [—U  r°  log (--.L;z  — if/01 0(a2). 

(e) Use the•RG to show that the anomalous dimension is 
a 

A = — 0(o2), 

which should be consistent with your exact result in (c). 



CHAPTER 1 1 

Continuous Symmetry 

No discussion of phase transitions would be complete without some ac-
count of the nature of the correlations in the ordered phase, for systems 
with a continuous symmetry. This chapter gives an introduction to this 
important topic, and has two main parts. The first is that when a contin-
uous symmetry is spontaneously broken below a temperature Tc, hence 
giving rise to long range order, transverse correlations (which we de-
fine shortly) exhibit power law decay for all temperatures T < Tc. This 
result is a form of Goldstone's theorem. The second point that we 
discuss here is the special case of the XY model in two spatial dimen-
sions, where there is a phase transition at a non-zero temperature in the 
absence of ordering: (S) = 0 for all temperatures! This is the so-called 
Kosterlitz-Thouless transition. 

Spontaneous symmetry breaking is ubiquitous, and is accompanied 
by important phenomena: the acquisition of rigidity, the existence of low 
energy excitations, and the possibility of topological defects The physics 
described in this chapter is relevant to physical systems such as magnets, 

See (e.g.) P.W. Anderson, Basic Notions of Condensed Matter Physics (Ben-
jamin/Cummings, Menlo Park, 1984). 

335 
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superfluids, superconductors, Heisenberg spin glasses, liquid crystals, rub-
ber, not to mention the phase transitions which may have occured during 
the early universe. 

11.1 CORRELATIONS IN THE ORDERED PHASE 

Our discussion of systems with continuous symmetries is based upon 
the 0(n) model, which we will treat as the Landau theory for a system 
with an order parameter S with n components (n > 1), such as a Heisen-
berg model. Thus S = (S1, 52, ,S,,) and the statistical mechanics is 
governed by the effective Hamiltonian 

—1-i= ddr R(VS)2  27.052  -1- -1;00P — h • S] , 	(11.1) 

where h is an external field? 

Notation:- 
d n no  

(vs)2 E 	[u,cek
f 
 rii  2  

axi 
i=1 a=1 

S2 = E [saw? ; 
a=1 

54 (52)2.  

The partition function is given by 

Z = f DS en, DS E. 11 DS, 
o=1 

(11.2) 

(11.3) 

(11.4) 

(11.5) 

The term "0(n)" refers to the fact that in zero external field, 71 is in-
variant when at each point in space r, the order parameter field S(r) is 
rotated by the same angle in n dimensional order parameter space. 

The homogeneous part of the Landau free energy density is3  

1 	1 V(S) = —
2

7.0512  —
4
u0S4, 	(11.6) 

2  Note that factors of kET have been absorbed into the definitions as usual. 
3  Sometimes the homogeneous part of the Landau free energy is called the potential 

energy and the gradient part is sometimes called the kinetic energy. These terms are 
misleading in statistical mechanics, and allude to the similarity between the Hamilto-
nian (11.1) and the Lagrangian of a self-interacting boson field theory. 
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V(S) 
	

V(S) 

(a) 
	

(b) 
Figure 11.1 Homogeneous part of the Landau free energy for the ()(n) model. 
Sketched for simplicity is the case n = 2: (a) 2'2> T. (b) 7. <21. 

which has the behaviour shown in figure (11.1), for h = 0. For ro  > 0 there 
is one minimum at S = 0, corresponding to the high temperature phase of 
the system which is not ordered, whereas the minimum at 52  = —ro/uo 
is infinitely degenerate for ro < 0. The degeneracy corresponds to the 
directions in order parameter space (not real space) in which the system 
may order below Tc. 

11.1.1 The Susceptibility Tensor 
In this section, we examine the response function for a system with 

0(n) symmetry. Suppose the field h is applied along the direction n in 
spin space. Then the spins will order along that direction, and the mag-
netisation vector is 

(Sa(x)) = mna, 	(11.7) 
where m is the magnitude of the magnetisation vector m. We may take n 
to be the vector (1,0, 0, , 0) and then define the two-point correlation 
functions 

aii(k) = (Par) 
	

(11.8) 

175k+k,,obaodi(k) = (SakSpk,), a, /3 ?. 2. 	(11.9) 
The former is the longitudinal correlation function, measuring the 
correlations in the order parameter components parallel to the direction 
of ordering, whilst the latter is the transverse correlation function, 
measuring the correlations between components of the order parameter 
which are orthogonal to the direction of ordering. The corresponding sus-
ceptibilities are given by the static susceptibility sum rule 

XII = &H(0);Xl = &±(0). 	 (11.10) 



Xa0 = h Oh 

= —°c°174—olt 
haho 02 f 

= h2  Oh2  

0 ho Of 

haAo —10 f hi:Aft .92 f 
h h2  Oh 	h2  Oh2  
1 0 f „ 	haho) 

— reit V4  h2  ) • 
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These longitudinal and transverse susceptibilities have the following 
significance. We define the susceptibility tensor by 

	

2 f 	

' 
0 

	

Xa# =  	 (11.11) Oh,Oho 
°ma  

— Oho , 	 (11.12) 

where f is the free energy per unit volume. The susceptibility tensor 
describes how the ath component of the magnetisation is changed due to 
the fith  component of the external field. Since 11{S} is 0(n) symmetric, 
f cannot depend on the direction of h. Hence, 

f = f(h) 	 (11.13) 
n 	I 1/2 

h = Ihl = [Eh! 	. 	(11.14) 
a=1 

Thus, differentiating (11.11) and using 

0 	Oh 0 
Oh„ = Oh, Oh 

h„ 0 
h Oh' 

we get 

Now, h = hn so that 
h

ah
ho 

= nano. 2  
Thus 

Xao = nanoXII(h) Xi(h)(4500 — nano), 
with the longitudinal susceptibility 

02 f 
X11 (h) = _ oh2,  

(11.20) 

(11.22) 
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and the transverse susceptibility 

1 f 
Xl(h)  = h 8h 	h 	

(11.23) 

Now we can see the physical significance of these quantities: recall that 

Ome, 
Xap = ok,  . 

Equation (11.21) implies that if the probe field h is in the same direction as 
m, then the susceptibility is given by 	If the probe field is perpendicular 
to the direction of m, then the susceptibility is given by xi. 

11.1.2 Excitations for T < Tc: Goldstone's Theorem 
The expression for the transverse susceptibility, eqn. (11.23), has pro-

found consequences. For T < Tc, the system exhibits spontaneous sym-
metry breaking when h = 0, and there is long range order: m # 0. 
Thus 

X1(0)-1  = 0. 	 (11.25) 

Using the static susceptibility sum rule (11.9), this implies that 

'&1.(k = 0)-1  = 0 	 (11.26) 

In other words, in the transverse direction, the system is infinitely suscep-
tible — it requires an infinitesimal amount of field to rotate the direction 
of magnetisation by a finite, non-zero amount! This is quite reasonable, 
when we consider the potential V(S) for 7.0  < 0. There are an infinite 
number of minima of the effective Hamiltonian, each corresponding to 
the system spontaneously acquiring a magnetisation along a different di-
rection. It requires no energy to go between these minima, since they are 
degenerate. 

We see that when the 0(n) symmetry of 7-1 is spontaneously broken 
there are two sorts of fluctuation: those parallel to the direction in which 
the system has ordered, and those perpendicular to it. These fluctuations 
cost different amounts of energy: a fluctuation parallel to the direction of 
ordering (i.e. a longitudinal fluctuation) is one which causes the magnitude 
m of m to change. By inspection of the potential V(S), we see that there 
is an energy penalty for increasing or decreasing m. On the other hand, 
fluctuations in the direction perpendicular to m only change the direction 
of m, and cost no energy, as we have already mentioned. 

(11.24) 
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So far, we have only discussed the case of spatially uniform systems. 
What happens when we allow for spatial variations of the deviation of the 
order parameter from the equilibrium value in the ordered state? Now the 
gradient term in 71 must also be considered. Reasoning by continuity, we 
might expect that longitudinal fluctuations still have high energy, whereas 
transverse fluctuations will now require a small but non-zero energy, the 
amount being proportional to (VS)2. Hence, the longer the wavelength 
of the fluctuation, the smaller the associated free energy. We have made 
a rather useful deduction: purely because of the ordering, a system with 
an 0(n) symmetry should have an excitation spectrum with modes of 
arbitrarily low free energy. In fact, there will be one such mode associated 
with each transverse direction, which makes n-1 low energy modes. These 
modes are called Goldstone modes. 

Another striking consequence of spontaneous symmetry breaking is 
the form of the correlation functions below Tc. Let us calculate the two 
point correlation function for fluctuations about the ordered state, in the 
Gaussian approximation. The procedure follows that we used to study 
the Gaussian approximation above Tic: 

(i) Minimise —7-1 to find the spatially uniform state. 
(ii) Calculate the free energy cost of a fluctuation to second order. 

(iii) Read off the two-point function, using essentially the equipartition 
of energy, as we did in section 6.3.4. 

Step 1 
We begin by writing down the potential, using Einstein summation con- 
vention, and differentiating to find the mean field solution: 

	

1 	1 

	

V(S) = 2 
	

+ 4 
	

(11.27) 

V 
4

1 
= roS, + —no(2Sa(SoSp) • 2) 	(11.28) 

5c,  
= Sa(ro + uoS2 ). 	 (11.29) 

Thus, the mean field solution is, for ro > 0 (i.e. T > 

	

= 0 	 (11.30) 

and for ro < 0 (i.e. T < TO, 
(5)2 m2 = —ro/uo. 

For ro < 0, although m2  is defined, the direction of S is not defined. There- 
fore, we choose some arbitrary direction of ordering n = (1,0,0, ... , 0): 

(S) = mn, 	 (11.32) 
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and define the fluctuation cfr(r) by 

S(r) = m + m4(r). 	 (11.33) 

Step 2 
Now we split up the fluctuation ck into a part tki  that is parallel to m 
and a part 01  that is transverse. Thus, we write 

S = m [n + fh n + 01.1, 	 (11.34) 

01 = (0,02, 03, • • • On). 	 (11.35) 

Note that by including the factor of m in the definition of the fluctuation, 
eqn. (11.34), 01  represents the direction in order parameter space of the 
fluctuation. 

Now we calculate each term in V(S): 

S2 /m2  = 1  + 26. + 0? + 02.0 	 (11.36) 
54/m4  = 1 + 401  + 644 + 44 + 44 + 01 

	
(11.37) 

+ 24 + 402. 51  + 24401. 

After substituting into V(S) and some algebra, we find that the quadratic 
terms are 

V(S) 	
4 tio — r

om20?. 	 (11.38) 
1 2  

Note that there are no terms quadratic in 01. The gradient term is just 

.(VS)2  = 71-12'2-( 1)2  + n4 X70 	(00.1.)2. 	(11.39) 

Finally, the effective Hamiltonian 1i for small fluctuations about the 
ordered state is given by 

2 
_nolo 

= n2 
2  f ddr  [(Vol.)2 + 	2 0701• 

) + (21r01)41 + 0(4,01021). 
(11.40) 

Step 3 
Writing this in Fourier space, and identifying the two point correlation 
functions, we find 

-nw = 31,- E [12-iikroli(k)-1 + 2kki2&1(k)-11 , 	(11.41) 
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with the longitudinal and transverse correlation functions G and 6'1 in 
the Gaussian approximation being 

m-2 

= 21r01 4- k2  
(11.42) 

and m-2 
di(k) = k2  . (11.43) 

The transverse correlation function has no r0  term in the denominator, 
and thus the transverse correlations have power-law decay for T < T 
The longitudinal correlation function decays exponentially below /1, with 
a correlation length t<2 = 21r01 = 2G2, which is the result we found 
in section 5.7.5 for the case n = 1. The pole in di(k) at k = 0 is the 
Goldstone mode. We see that for spontaneous symmetry breaking in 
the 0(n) model there is one mode — the longitudinal mode — with 
a finite correlation length, and n — 1 modes — the transverse modes 
00,(a = 2 ...n) — with an infinite correlation length Other systems with 
different continuous symmetries may have different numbers of Goldstone 
modes. 

Although our calculation was performed in the Gaussian approxima-
tion, the form of eqn. (11.43) is preserved to all orders in perturbation 
theory; this result — Goldstone's theorem — is a direct consequence of 
the original 0(n) symmetry5. Goldstone's theorem is generally true when 
there is a spontaneously broken symmetry, and evasions of the theorem 
when there are gauge fields presents are important in superconductiv-
ity and in the electroweak theory, giving rise to a finite electromagnetic 
penetration depth and intermediate vector bosons respectively. Every-
day examples of Goldstone modes include spin waves (in magnets) and 
phonons (spontaneous breaking of translational invariance). 

4 In quantum field theory, the bare propagator of the boson field 4'  has the form 
.G0(k) = 1/(k2  -I- m2), where m is the mass of the particle represented by 0. Thus m 
is analogous to E-1  in statistical mechanics. Goldstone modes are therefore referred to 
sometimes as massless because their propagator is the same as that for massless bosons 
in quantum field theory. 

no

ja
(1
5  See (e.g.) D.J. Amit, Field Theory, the Renormalisation Group and Critical Phe-
mena (World Scientific, Singapore, 1984), pp. 94-96. 
6  See (e.g.) P.W. Anderson, Bask Notions of Condensed Matter Physics (Ben-
min/Cummings, Menlo Park, 1984); S. Weinberg, Prog. Theor. Phys. Suppl. 86, 43 
986); H. Wagner, Z. fir Physik 195, 273 (1966). 
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11.1.3 Emergence of Order Parameter Rigidity 
Another important consequence of spontaneous symmetry breaking in 

systems with a continuous symmetry is the emergence of rigidity. This 
is intimately connected with the presence of power law correlations in the 
transverse response function. Let us examine the transverse contribution 
to —Ho in real space: 

—Ho = longitudinal part + I ddr R (V ±(r))2  , 	(11.44) 

where the stiffness or rigidity R = m2, within the framework of Landau 
theory. Recall that 4).1  is the direction of a fluctuation about the ordered 
state. Equation (11.44) shows that any spatial variation in the order pa-
rameter perpendicular to the direction of ordering raises the energy of 
the system. Thus, the system exerts a restoring force in response to any 
attempt to create such a configuration: this is precisely what we mean 
by rigidity. Within Landau theory, the strength of the response is gov-
erned by R = m2, i.e. the expectation value of the order parameter. Thus, 
at least within Landau theory, only when there is long range order and 
m 	0, can the phenomenon of rigidity occur? In the high temperature, 
symmetric phase, the system is not rigid. Nevertheless, the longitudinal 
part of the effective Hamiltonian has the same form in both the high and 
low temperature phases. It is only by probing the transverse response of 
the system that the state of order can be determined. 

Two common examples are the following. Ferromagnets are distin-
guished from paramagnets by the energy cost of creating a spin wave: the 
coefficient of (V01)2  is sometimes called the spin-wave stiffness. Solids 
are distinguished from liquids by their ability to support an infinitesi-
mal static shear: the analogue of the effective Hamiltonian (11.44) is the 
coarse-grained free energy of elasticity theory, which for an isotropic solid 
takes the forms  

F = —1  I ddr [2fig(r) Aukk(r)21 	(11.45) 
2 

where uij(r) is the strain tensor, and A and it are the Lame coefficients. 
In particular, the existence of the solid state is reflected in the non-zero 
value of it, the static shear modulus. 

7  An exception is the case of certain two-dimensional systems, which undergo the 
Kosterlitz-Thouless transition; see section 11.2. 

8  L.D. Landau and E.M. Lifshitz, Theory of Elasticity (Pergamon, New York, 1986). 



344 	 11 Continuous Symmetry 

11.1.4 Scaling of the Stiffness 
Given that the non-zero value of the stiffness is a diagnostic of the the 

spontaneous breaking of a continuous symmetry, it is of interest to deter-
mine how the stiffness rises from zero below the transition temperature. 
Our Landau theory treatment showed that R = m2, and since m N (-00  
for t < 0, we conclude that 

R ti  (-t)23. 	(11.46) 

This is, of course not correct, because Landau theory breaks down in the 
critical region, but we can use scaling to determine the correct relation. 
The free energy density has units L-4, and therefore scales like (t)-61  
in the critical region. On the other hand, in physical units where 0.1  is 
dimensionless, the term (V01.)2  has dimensions L-2, and thus scales like 
WY-2. Hence we conclude that 

R 	(....t)d(d-2) for t < 0. 	 (11.47) 

We can use the Josephson scaling law (8.3) together with the scaling laws 
(8.1): 

a+ 2/3+7= 2 
	

(11.48) 

and (8.37): 
= v(2 - 	(11.49) 

to rewrite eqn. (11.47) as 

R 	(-4)2°-ny for t < O. 	 (11.50) 

In Landau theory, n = 0, and the result (11.50) reduces to eqn. (11.46); 
but in the critical region, eqn. (11.50) shows that there are corrections to 
the mean field theory result due to the anomalous dimension q. 

11.1.5 Lower Critical Dimension 
Now that we have found the fluctuation spectrum about the low tem-

perature ordered state, we can address the issue of the lower critical 
dimension for systems with a continuous symmetry. The basic idea is 
the same as in the discrete symmetry case: we examine the stability of the 
ordered state to the fluctuations that are thermally excited. In the present 
case, we might expect that the ordered state is not very stable compared 
with the discrete symmetry case, because of the presence of Goldstone 
modes, and this is indeed correct. In order to decrease the effect of fluctu-
ations, relative to the mean field, it is necessary that the dimensionality 
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d be greater than two, as we will see. Note that the larger the dimension, 
the greater the coordination number, and therefore, the more potent is 
the mean field. 

We study the stability of the ordered state by looking at the most dan-
gerous modes, namely the transverse fluctuations. The correlation func-
tion for the transverse fluctuations about a putative ordered state is 

A ddk eik.(r—r') 
G 	— r)  _ (11.51) ( (270d k2 • 

For d > 2, the integral is convergent at the lower limit, but for d < 2, it 
has an infra-red divergence: these large transverse fluctuations about the 
ordering direction destroy the long-range order in the system. Thus we 
conclude that for all non-zero temperatures, 

(S) = 0, d < 2. 	 (11.52) 

Although we have arrived at this conclusion on the basis of the Gaussian 
approximation, the result, known as the Mermin-Wagner theorem can 
be proven in complete generality? Thus, the lower critical dimension for 
systems with a continuous symmetry is d = 2. 

11.2 KOSTERLITZ — THOULESS TRANSITION 

Exactly at the lower critical dimension, it turns out that the case 
n = 2 and d = 2 is special. For this case, it is conventional to introduce 
the complex field 

0(r) = S1(r) iS2(r) 	 (11.53) 

and to write the Hamiltonian as 

= constant + der 	 /252 (1012 - 17'01)21 
21 	4 	1/0 

(11.54) 

11.2.1 Phase Fluctuations 

We argued in section 6.2 that the true 71 is actually below the Tc 
of Landau theory, because the thermal fluctuations neglected in Landau 
theory tend to disorder the system. This effect is most severe at or near 
the lower critical dimension, and thus, in the present case, there will 

9  N.D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966). 
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be a range of temperatures below the mean field transition temperature, 
and therefore with 7.0  < 0, but still above the true transition to any 
ordered state that may exist. In this range, there are both amplitude and 
direction fluctuations in the order parameter S, but as we have seen above, 
the amplitude fluctuations are very much suppressed with respect to the 
direction fluctuations. Thus, to a good approximation, we may take u0  to 
be larger but Irol/uo finite, in the temperature range discussed above; 
setting 

17.01 	. 
b(r) = 11— exp[tO(r)], 	 (11.55) 

tto 

we obtain the effective Hamiltonian for the phase fluctuations 0(r): 

_no  = 
2 J 

der (00)2, 	 (11.56) 

with K = 'rot/tin. This effective Hamiltonian governs the long wavelength 
physics for temperatures well below the mean field transition temperature. 
We will assume that we can neglect the periodicity of 8, which requires 
that the configuration 0(r)-F2rn is equivalent to 0(r) when n is an integer, 
and write the partition function as 

00 
Z =DO exp 1-19. 	 (11.57) 

—00 

11.2.2 Phase Correlations 

Equation (11.57) represents a model for spin-waves about a putative 
ordered state. The effective exchange interaction of the spins is 

J = (kBT)K. 	(11.58) 

By assuming that the fluctuations are small about the ordered state, the 
extension of the limits to ±co in the partition function is not unreasonable. 

10  The effective Hamiltonian (11.54) is sometimes said to describe soft spins, because 
the order parameter has a direction and some variation in the amplitude is allowed. In 
the limit u0 oo, the amplitude fluctuations about the mean field value are suppressed, 
and the system is a formal representation of the usual spin system. In this limit, the 
Hamiltonian is sometimes said to describe hard spins. 
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Let us now look at the order parameter correlation function, which in 
terms of the phase is proportional to 

G(r) (ei[e(r)-1/(0 ) 	 (11.59) 

= e-1(09(0-0(0))2) 	 (11.60) 

where, in the second equality, we have used the fact that 7-1 is Gaussian. 
Then, we have 

2kBT A  d2k 1— eik'r  
((0(r) — 90:0)2) = - 

J 	(2702 k2 (11.61) 

(1bk12 / 
	Jk2 
_2kBT 

(11.62) 

from eqn. (11.57). Using the integral representation of the Bessel function 
Jo, eqn. (11.61)• becomes 

2kBT IA dk 1- Jo(kr) a  
(MO- 9(0))2) = 	 (11.63) 

J fo  2r 

for r 	 (11.64) 

(11.65) 

We have reached a rather startling conclusion. Since (Mr) - 9(0))2) 
log r, there is no long range order: the angular deviation between spins 
increases as the separation increases. Furthermore, the order parameter 
correlation function decays algebraically to zero, with an exponent n which 
is not universal, but depends on T and J. In conclusion, we can view the 
spin-wave model as having a line of critical points from T = 0 to T = oo. 

The spin-wave approximation is, at best, valid at low temperature. At 
high temperature, we would expect that the system is a true paramagnet, 
with exponentially decaying correlations. Therefore, we conclude that the 
true phase diagram has power law correlations at low temperatures, but 
no long range order; and exponentially decaying correlations with no long 
range order at high temperatures. Hence, there must be a phase transition 
at some intermediate temperature TKT, known as the Kosterlitz-Thouless 
transition temperature. The line of critical points, which we have just 
derived, actually only exists for 0 < T < TKT < Tc, where Tc  is the 
transition temperature in the original Landau theory. 

which follows because 

which leads to the asymptotic result 

((OW - 0(0))2) = kBT -- log 
J A-

r  
1  

Thus, we find that the correlation function itself is given by 

G(r ) = r-n; 	
- kBT 

27r. 
J ' 
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Figure 11.2 A vortex with unit winding number. The arrows denote the direction of 
the order parameter, and their magnitude denotes the amplitude. The order parameter 
is defined on a square lattice. 

11.2.3 Vortex Unbinding 

How does the putative transition occur at TKT? BerezinskiiP and 
Kosterlitz and Thouless12  proposed that the transition was associated 
with the unbinding of vortices. Vortices are singular spin configurations 
which we have neglected in our calculation of the long wavelength be-
haviour of the spin-wave model. 

A vortex configuration is shown in figure (11.2). It has the property 
that when integrated around any closed path 

dr • VO = 2rn, 	 (11.66) 

where n, a positive or negative integer is called the winding number. 
This is easy to understand: since dO = VO•dr, the line integral in (11.66) is 
just the total change in phase along the path. By tracing around a closed 
path in the figure, one can check that if the path encloses the vortex 
centre, the winding number is 1; otherwise, the line integral is 0. The 
winding number is closely related to the familiar concept of the Burgers' 
vector associated with a dislocation in a solid. 

What energy is associated with a vortex? To answer this, we need to 
know the field configuration of a vortex, which we can obtain from eqn. 
(11.66): we simply take as a contour a circle of radius r > a around the 

11 V.L. Berezinskii, Soy. Phys. JETP 34, 610 (1972) [ Zh. Eksp. Teor. Fiz. 61, 1144 
(1972)]. 
12  J.M. Kosterlitz and D.J. Thouless, J. Phys. C 5, L124 (1972); ibid. 6, 1181 (1973). 
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vortex. Hence we find that VO 1/r and so each vortex has energy 

El 
1 = 
2 	

f(V0)2d2r = rJ log (L/A-1) , 	(11.67) 

where L is the linear dimension of the system. For a single vortex in 
an infinite system, the energy is infinite. But for a pair of vortices with 
opposite winding numbers, the energy is 

Epair(r) 27./ log (r/A-1) . 	 (11.68) 

where r is the vortex separation. 
Kosterlitz and Thouless suggested that at low temperature, the vor-

tices are bound in pairs, but at high T, they become unbound. We can es-
timate how this happens by making a crude version of the energy-entropy 
argument. At low temperature, the energy cost of a single vortex is El. 
The entropy of a single vortex in a system of size L is given approximately 
by 

S = kB log(L/A-1)2 	 (11.69) 

because (L/A-1)2  is the number of possible lattice sites that the core 
could occupy. Thus the free energy of an isolated vortex is 

F= E1  - T S = (rJ - 2kBT)log (L/A-1) . 	(11.70) 

At low temperature, the free energy cost of creating a vortex diverges 
as L 	co. But at high temperature, it is favorable to create isolated 
vortices. Thus, the unbinding occurs at a transition temperature 

irJ T, = 	. 2kB  

This is the essence of the Kosterlitz-Thouless theory. The simple picture 
presented here neglects interactions between vortices, but a much more 
detailed RG theory of the transition confirms the essential correctness of 
these argumentsl3  

13  J.M. Kosterlitz and D. Thouless, J. Phys. C 6, 1181 (1973); ibid. 7, 1046 (1974); a 
comprehensive review of the extensive applications of the Kosterlitz-Thouless transition 
is given by D. Nelson in Phase Transitions and Critical Phenomena, vol. 7, C. Domb 
and M.S. Green (eds.) (Academic, New York, 1983). 
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11.2.4 Universal Jump in the Stiffness 
What happens to the stiffness or rigidity R at the Kosterlitz-Thouless 

transition? Landau theory predicts that the stiffness is R = 17.01/u0  0, 
despite the fact that it also predicts that the phase fluctuations imply 
that m is zero at all temperatures. Note that within Landau theory, the 
stiffness R happens to be the same as the effective exchange interaction 
J between spins in the XY model version of the theory. 

The RG theory of the Kosterlitz-Thouless transition shows that these 
conclusions are qualitatively correct. However, the stiffness R becomes 
smaller than J for T > 0 and vanishes discontinuously at TKT, with 

Thus, Thus, the ratio 

2 , k
BTKT —  Ir 

(11.72) 

R(TKT) 2 
(11.73) kBTKT 7r 

which is a universal number. This prediction has been verified experi-
mentally for the superfluid transition of thin helium films14  and for the 
roughening transition of equilibrium crystal surfaces15  

The RG theory also predicts that the exponent 7/ is given by a modified 
form of eqn. (11.65): 

kBT 
rl — 27rR• 

At the transition_ itself, eqns. (11.73) and (11.74) imply that 

(11.74) 

7I(TKT) = 1/4. 	 (11.75) 

14  I. Rudnick, Phys. Rev. Lett. 40, 1454 (1978); D.J. Bishop and J. Reppy, Phys. 
Rev. Lett. 40, 1727 (1978). 
15  P.E. Wolf, F. Gallet, S. Balibar and E. Rolley, J. de Physique 46, 1987 (1985). 



CHAPTER 12 

Critical Phenomena Near 
Four Dimensions 

In this chapter, we discuss a very popular method of studying critical 
phenomena analytically: the so-called E-expansion. We saw in chapter 
7 that for dimensions less than four, naïve perturbation theory in the 
quartic coupling constant uo breaks down in the critical region, because 
the dimensionless expansion parameter 

tto uoa--6/2t—e/2 	 (12.1) 

diverges as t —+ 0. Here a is a positive constant and 

c = 4 — d. 	(12.2) 

Thus, for d < 4, the nth  term in a perturbation expansion in uo  will 
diverge when n > 2/E. This divergence is equivalent to the power law 
infra-red divergence of the integrals in perturbation theory, explained in 
section 6.4, and for many years, prevented progress in understanding crit-
ical phenomena. 

There are (at least) two ways to work around this problem. The first is 
the momentum shell RG; which is closely related to the real space RG 

qu

1  The use of the term 'momentum' is historical and derives from the analogy with 
antum field theory. 

351 
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that we used in chapter 9 to study the two dimensional Ising model. The 
basic idea is that to construct the RG recursion relations, it is only ever 
necessary to perform a partial trace over the short wavelength degrees of 
freedom, on scales less than the block size. In the momentum space 1W, 
this partial trace is performed on the Fourier components of the order 
parameter, so that the range of integration is always A/C < lki < A, 
where A is the coarse-graining length, which serves as an ultra-violet cut-
off to the integrals, and k = lki is the wavenumber. In this range of 
integration, there can be no infra-red divergences, because k is restricted 
to be away from zero, and the RG recursion relations can be calculated in 
perturbation theory in uo. The second step of the RG is to find fixed points 
of the recursion relations. We will see that in addition to a fixed point 
representing Landau theory with uo = 0, another fixed point exists, with 
a value for uo which is in general large and outside the regime of validity 
of perturbation theory. However, if we regard the spatial dimension d as 
a variable, then for c << 1, an expansion of the recursion relation can also 
be made in powers of c! Near four dimensions, there is a fixed point for 
ti; = 0(c) 0 0, which is accessible by perturbation theory. This fixed 
point governs the critical behaviour, and near four dimensions, the global 
flow diagram, exponents etc. can be constructed. As an additional bonus, 
it turns out that the numerical results obtained by setting c = 1 in the 
formula obtained are reasonably accurate. The c expansion is divergent, 
but assumed to be Borel summable and thus the numerical results using 
this method can be made rather accurate? 

The second way to work around the infra-red problem is to use naive 
perturbation theory, but to perform a double expansion in both u0  and c. 
The basic point here is that we can write 

r'/2  = exp [--E2  log ti 	(12.3) 

= E°3  (—ir (log t)", 	 (12.4) 
n=0 

suggesting that in this double expansion, even below four dimensions, the 
perturbation expansion will only contain logarithmic divergences. These 

2  J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Clarendon, Ox-
ford, 1989), Chapter 25. A third way to calculate critical exponents is explained in this 
reference: perturbation expansion above TT  at fixed dimension. This perturbation ex-
pansion is divergent, as is the &expansion, but has been rigorously proved to be Borel 
summable. 
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logarithmic divergences can be renormalised using the techniques de-
scribed in chapter 10, applied to field theory3 and the critical behaviour 
then follows. Here, we shall not follow this approach, often referred to as 
the field theoretic approach. 

12.1 BASIC IDEA OF THE EPSILON-EXPANSION 

The starting point is the effective Hamiltonian of Landau theory for 
the Ising uiversality class, which we will write in terms of the scalar order 
parameter S(r), in order to emphasise the similarities with your treatment 
of the RG for the Ising model: 

_n{s}  = 
J 

ddr  [1(vs)2 Fos2 4uos4 — hod 	(12.5) 

The method described in this chapter can be applied to the effective 
Hamiltonian for any universality class, with order parameters more com-
plicated than the scalar one here. When we refer to Landau theory below, 
we explicitly mean the effective Hamiltonian (12.5). Note that exercise 3-3 
shows that, using the Hubbard-Stratonovich transformation, spin models 
such as the Ising model can be mapped into an effective Hamiltonian of 
the form of (12.5), but with additional terms higher order in S. These 
terms are irrelevant at the Gaussian fixed point, as shown in exercise 7-1. 

The basic idea is that if we start with this Landau theory and ap-
ply (in some as yet unspecified way) a RG transformation, the coupling 
constants ro, uo, ho  will flow towards fixed point values r*, 	h*. For 
d > 4, we have already argued that the Gaussian approximation gives the 
correct exponents. Thus, we might expect that at the critical fixed point 
corresponding to the Gaussian theory 

r* = h* = u* = 0. 	 (12.6) 

This is the so-called Gaussian fixed point. For d < 4, it will turn out 
that this becomes unstable to another fixed point, the so-called Wilson-
Fisher fixed point. By this we mean that the Gaussian fixed point 
acquires a new relevant variable for d < 4, which sends the RG flows 
towards the Wilson-Fisher fixed point. For c < 1, the Wilson-Fisher fixed 
point is near the Gaussian fixed point, which is why perturbation theory 
can be successfully used. We can see why this might be the case by the 
following heuristic argument. 

3  See the exposition by D.J. Amit, Field Theory, the Renormalisation Group and 
Critical Phenomena (World Scientific, Singapore, 1984). 
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The coupling constant has dimensions [uo] = La-4, from eqn. (7.8). 
Hence, if we neglect the contribution to the recursion relation from other 
coupling constants, under a RG transformation R1, we have 

uo 	u0  = t4—duo  = tcuo.  

We can write this recursion relation in differential form as 

dus  — ds = cus, 

(12.7) 

(12.8) 

where s a-_- log C. This recursion relation would predict that for E.  > 0, the 
quartic coupling constant grows unboundedly under iteration of the RG 
recursion relation. Of course, we know that we cannot ignore the effects 
of other coupling constants, so this recursion relation is not correct. Now, 
suppose that the correct recursion relation is actually 

dus  = (us  - Au! + 0(4), ds (12.9) 

where A is some constant of order unity. Then, for A < 0, the only fixed 
point consistent with u0  > 0 would be uo = 0. On the other hand, if A 
turned out to be positive, then 

* 	C  
U0 = A  (12.10) 

is a possible fixed point, in addition to the Gaussian fixed point ua = 
0. The fact that there might be a non-trivial fixed point at u* = 0(e) 
suggests that perturbation theory in e might be successful, and this is 
indeed what we shall show in this chapter. 

A critical fixed point with uo < 0 is not physically acceptable, because 
the Landau free energy density would have no lower bound, and therefore 
could always be minimised by taking 151 oo. 

12.2 RG FOR THE GAUSSIAN MODEL 

As a prelude to our RG analysis of the Landau theory for the Thing uni-
versality class, it is convenient to consider the Gaussian model, which is 
defined by the Landau free energy (12.5), with u0  = 0. Of course, without 
the quartic coupling, it is impossible to have an ordered phase. Never-
theless the Gaussian model should be adequate if we restrict ourselves to 
T > Tc, where it has the merit that it is exactly soluble (as discussed in 
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chapter 6). Furthermore, according to the Ginzburg criterion, this model 
should be valid for d > 4 and T > Tc. 

Our starting effective Hamiltonian is the Landau theory, which we 
write in Fourier space (see section 6.3.3) as 

—7l V 2_, 1,5k1"(ro k2 ). 	(12.11) 
o<jkl<A 

We define a RG transformation by performing a partial trace over (or 
"integrating out") the degrees of freedom with wavenumber 

A 7  < lki < A for t > 1. (12.12) 

This will leave us with an effective Hamiltonian for degrees of freedom 
with 0 < 	< A/t, and we will not quite be able to simply read-off the 
recursion relations for the coupling constant. To return the Hamiltonian 
to its original form, we need a second step: a resealing of space, so that the 
new Hamiltonian is defined in terms of the original degrees of freedom. 
The procedure followed below is similar to the real space RG for the 
Ising model of section 9.6, and the reader may wish to review this before 
proceeding. 

12.2.1 Integrating Out the Short Wavelength Degrees of Freedom 
We define the long and short wavelength components of S(r) respec-

tively by 

:5;(k) = Sk  for 0 < 	< -, 
	(12.13) 

and 
'k) = Ek  for — < lkj < A. 	 (12.14) 

In real space 

= 	
/A t ddk 	jA ddk  

S(r) sketk-r 	 skesk.r 	(12.15) 
o 	(27r)d 	nit (27r)d  

51(r) Qt(r). 	 (12.16) 

To emphasise the analogy with the real space RG: S; corresponds to the 
block spins, whilst at  corresponds to the microscopic degrees of freedom 
within a block. 
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The effective Hamiltonian can be split into long and short wavelength 
parts: 

-n = 	2_, 2  Pei (ro + k2) + 	E .116-42(ro+k2)(12.17) 
k<A/t 	A/t<lkl<A 

= —7-1,{:5i(k)} — H {er,e(k)}. 	(12.18) 

The partition function is simply a function of r0: 

Z(ro) = f DS en 	 (12.19) 

= I H 0<,k,<A 
tdkeli fk } 	(12.20) 

= 	H 	d:5.e(k) 	ri 	dart(k) e7.1.9+.1.(6 	(12.21) 
0<lkl<A/t 	Ag<IkkA 

= Zs • Z.,. 	 (12.22) 

Z, is the analogue of the term Zo(K)m  in the real space RG of section 
9.6, and has the explicit form 

[ Z„ = exp 
1 	

L  
x--. 

 log ro  k 
V  I 

2  
Alt<lkl<A  

(12.23) 

We will ignore this regular, multiplicative prefactor of Z, for the purposes 
of computing critical exponents, since it will not enter the recursion re-
lations for ro and uo; it will, however, affect the free energy. Now let us 
study Zs. 

[ Zs = f D.-51 exp — 1 E 1- (ro+k2)181(012 . V 	2 ikKtig 
(12.24) 

This is almost of the form of eqn. (12.11) but the momentum integral 
is cut-off at Ate rather than A. We want to be able to read off the re-
cursion relations for the coupling constants, and so we first need to put 
the Hamiltonian 7-e into the same form as 7-1. This can be easily achieved 
by resealing the momentum and fields, which are, after all, only dummy 
variables. 
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12.2.2 Resealing of Fields and Momenta 
Define 

(12.25) 

and 

	

A'f(kt) :--=- z-1:9;(k). 	 (12.26) 

The field 81 has been rescaled to :5't  by a factor z-1, which is sometimes 
called a wave function renormalisation. We need to introduce z, so 
that the coefficient of the (VSt)2  term in 71' will be 1/2, just as it was in 
1-i. This adjustment is necessary in order that there is the possibility of 
a non-trivial fixed point: the necessity to determine z corresponds, in the 
description of the fixed points of Barenblatt's equation in chapter 10, to 
the necessity to determine ¢ = 1/2. 

Substituting in these definitions, we have 

J 	
ft dal,. 	( 	1,2 

Zs(ro) = DEL,  exp [-- 	 ro  + 21) ist(k)
2
z2] 

2 0  (274-)d 	12  
(12.27) 

The coefficient of ki is —t--(2+d)z2/2, so to ensure that this coefficient is 
actually equal to 1/2, we choose 

z = 	 (12.28) 

Then 

jA  ddkt 	2  ^ 
Zs(ro) = AS exp [--2- 	TiT—ry (re -Fki)151(k)121, 	(12.29) 

with 
re  = i-dz2r0  = £2r0. 	 (12.30) 

This is our desired RG recursion relation. 

12.2.3 Analysis of Recursion Relation 
A very useful way to analyse RG recursion relations is to write them as 

a differential RG transformation, and we will follow this procedure here, 
for purposes of illustration rather than necessity. We consider making a 
change —> f + 5€: then 

re+6€ = 	Ot)2r0 	 (12.31) 
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leading to 
drt 2 =
de 
	7  rt. 

As usual, we make the substitution s = loge to give 

dr. 
= ds 2r3. 

(12.32) 

(12.33) 

The fixed point is r: = 0 and the corresponding relevant eigenvalues are 

	

A, = £2; yr  = 2. 	 (12.34) 

Note that yr  can be directly read off from the differential form of the RG 
recursion relations. 

12.2.4 Critical Exponents 
As 7-0  oc t, the exponent yr  is simply yt: hence we can read off the 

exponent v. 
1 	1 v = 	= 
yt 2 

What happens if we include an external field? A uniform field simply 
couples to the k = 0 component of Sk, and the Hamiltonian becomes 

7-1 —0 1- - H ddr S(r) = 	71 + H;5'0. 	(12.36) 

This term is unaffected by integrating out the short wavelength degrees 
of freedom in the RG transformation, but is affected by the wave function 
renormalisation. It becomes 

H.;'; (0 ) = x.S1( 0)H 
	

(12.37) 
= H11+42  :Sit  (0 ) 
	

(12.38) 

	

= HtEt  (0). 	 (12.39) 

Thus we obtain the recursion relation for the field: 

	

Ht = il+d/2H, 	 (12.40) 

which can be written in the differential form 

dH.d = 1+ H ds 	2 
(12.41) 

(12.35) 
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Hence, the RG eigenvalue yh  has the value 

d 
Yh 2 

(12.42) 

and the values for the critical exponents can now be obtained from the 
scaling laws. Using the relation dv = 2 — a, we find that 

a = 2 — d/2. 	 (12.43)  

The gap exponent A= Yhht = (1 + d/2)/2, and thus, using the scaling 
law (9.35), we obtain 

= O. 

Substitution into the result of exercise 9-1 (a) immediately gives 

d + 2 — d — 2
. 

From the scaling law (8.26), we find that 

(12.44) 

(12.45) 

d 
fl= 4

2
•  (12.46) 

Lastly, the susceptibilty exponent is obtained from the Rushbrooke scaling 
law (8.29): 

= 1. 	 (12.47) 

If we now compare our RG results with the values for the exponents that 
we already obtained from the Gaussian approximation for the fluctuations 
about Landau theory, we find an unwelcome surprise: they do not agree! 
The values for # and b.  are incorrect. Why? The reader is encouraged to 
contemplate the wreckage of our theory and to try to find the error, before 
reading on. 

12.2.5 A Dangerous Irrelevant Variable in Landau Theory 

The exponents # and 46 are both defined with respect to thermody-
namic properties below or at Tc. This suggests that our error is connected 
with the fact that the Gaussian model is not well defined for T < Tc, and 
so should have nothing to say about these exponents, as we have already 
anticipated. 

However, it is an instructive exercise to see what goes wrong when 
one blindly tries to apply the Gaussian model below Tc, and to see how 
to deduce the correct exponents in the Gaussian approximation from RG. 
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After all, we saw in exercise 6-1 that below Tc, the Landau free energy 
can be expanded about the degenerate minima, and the fluctuation part 
has precisely the same form as the effective Hamiltonian we have been 
using in this section. Furthermore, the Ginzburg criterion shows that for 
d > 4 we can neglect the interaction between the fluctuations. 

As you might have guessed, the error made in proceeding blindly has 
to do with how uo  transforms under RG transformations. The RG tells 
us that, suppressing non-essential variables, the singular part of the free 
energy density transforms as 

h(t,h,u0) = 	fs(tlyt ,heyh ,uopu) 	(12.48) 

where we have used t rather than ro. The scaling of the magnetisation M, 
i.e. (S(r)), is given by 

M(t h, uo) = 1 afs
= 	

(12.49) kBT Oh  

Setting h = 0, and replacing = t-1/yt we get the scaling law 

M(t, 0, uo) = r("— 1̀)/YtM(1, 0, not —yu/yt ). 	(12.50) 

The Gaussian model gave yt  = 2yh  = 1+ d/2. What about yu? We expect 
uo  to be irrelevant at the Gaussian fixed point for d > 4, based upon the 
Ginzburg criterion. Thus, one might guess that yu  cc 4 — d, and in fact 
this will be shown below to be correct: 

yu  = 4 — d 	(12.51) 

and uo  becomes relevant for d < 4. 
Now let us re-examine our argument leading to the erroneous critical 

exponents. What we did was effectively to set uo  = 0 in eqn. (12.50), thus 
deriving 	

M(t, 0, uo) N  t/3  = r(Y")/YtM(1,0,0). 	(12.52) 

which leads to eqn. (12.46), using the values for yh  and yt. However, this 
step is incorrect. Landau theory gives M = —ro/uo, and so 

M(t, 0, no) oc u0-1/2. 	 (12.53) 

Thus we cannot set uo = 0 in the scaling law (12.50). The quartic coupling 
uo  is an example of a dangerous irrelevant variable. 

How can we deduce the correct values for /3 and 5? What we must 
do is to use the information in eqn. (12.53) about the scaling function to 
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take the uo 	0 limit of the scaling law (12.50): writing the scaling law 
as 

21(t, 0, uo) = r(Yh-40/"Fm (-2U  
Pul 

where the scaling function FM  has the behaviour 

(12.54) 

FM(x) oc (-x)-112  for x < 0, 	 (12.55) 

we obtain 

M(i3 O, Up) ,•%, 2-(Yh-d)/yt+yu/2yt 	. t 	for uo 0. 	(12.56) 

Thus 
= __1 (1 	) + (4

4 	
1 
2 

(12.57) 
2 	2   

Similarly we can obtain the correct value fort by using the fact that for 
t = 0 

M(0, h, uo) oc u0-1/3 	 (12.58) 

which follows from eqn (5.30). Setting t = 0 in eqn. (12.49) and making 
the obvious choice of C to obtain the scaling law we get: 

M(0, h, uo) = h-(vh-d)IYhM(0,1, uolz-Yui"). 	(12.59) 

Now, using eqn. (12.58) we obtain 

1 = 	(yh - d)  + 1 ( yu ) 

	

Yh 	3 k Yh 
	 (12.60) 

and thus ö = 3, which is the correct answer for the Gaussian approxima-
tion. 

To summarise: for d > 4, uo  is an irrelevant variable. The RG calcu-
lation for the exponents yt  and yh  was performed in the Gaussian model, 
neglecting uo. In order to obtain the critical exponents, we needed to use 
the RG in conjunction with information obtained from an approximation 
scheme (in this case mean field theory). Even though uo is an irrelevant 
variable at the Gaussian fixed point, it is dangerous for T < 

12.3 RG BEYOND THE GAUSSIAN MODEL 

In this section we will perform the RG calculation of the critical ex-
ponents in the complete Landau theory, near d = 4. The calculation is 
quite complicated because there will be many terms to count when we 
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integrate over the short wavelength degrees of freedom — the *&/(k) — to 
obtain the renormalised effective Hamiltonian. During the gory details, 
bear in mind that, conceptually, we are doing nothing more than what 
we did in the previous section and in section 9.6. The calculation is more 
complicated here than in section 9.6, because it is performed in Fourier 
space, and is systematic to the first order in c. 

12.3.1 Setting Up Perturbation Theory 
Our starting point is the effective Hamiltonian 

—1-1{S} = Jddr [221(VS)2  17.052  + -1;00,54  — hod , 	(12.61) 

As before 0 < lki < A. In working in Fourier space, will sometimes use 
the notation 

Jk 	

A ddk  f A 
2;7  0  dk, 

and we will set the external field /to  to zero. 
The next task is to write the quartic term in momentum space. 

ddr S(r)4  = 	ddr :5k3:5k2:51,3  :51,4  e=  Ei k` .r. 	(12.63) 
fkik2k3k4 

Using the definitions of Fourier transforms in section 5.7.2, this becomes 

I ddr S(r)4  = I 	(270d6(ki  + • • • + k4)Sk1  ... 	(12.64) 
ki...k4 

Finally, the effective Hamiltonian in Fourier space is 

—1.1{S} = 	(ro k2)1:9k , 
	1 
+ —A  uo 	•^9ki  • • • A.1c4 2 k 	 ki...k4 	 (12.65) 

x (27r)d  45(ki 	• • • + kg). 

Now we split up the field into short and long wavelength components 
as in eqns. (12.13) and (12.14). The difficulty of dealing with the interac-
tion term uo is now painfully obvious. The quadratic part of —H{S} does 
not couple .5; and 	but the quartic term does. Thus, we will write the 
effective Hamiltonian as 

—'H{S} = —1i541} 1-1,{6.1} — 11(kt, eft) 
	

(12.66) 

(12.62) 
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Here 	and lie, have the same meaning as in (12.17). Substitution of 
the definitions (12.13) and (12.14) into the quartic term of the effective 
Hamiltonian (12.65) gives the explicit form of V(Ybat), which we shall 
evaluate later. 

Let us now go through and sketch the outline of the calculation we 
are about to do, using as our model, the calculation of section 12.2. The 
partition function is 

Z(ro,uo) = I DS ell 	 (12.67) 

= DS +141-17 	 (12.68) 

= 	DS; eHs' Dat  ena+V 
	

(12.69) 

After integration over at, wave-function renormalisation of S; and reseal-
ing of k, we shall obtain 

Z(ro, uo) = DSi 	(12.70) 

where 7-le is the effective Hamiltonian for the coarse-grained order param-
eter Si. We can write down a formal expression for lit, just as we did in 
the real space RG of section 9.6. We define the average 

f Doe 	A(S.'t,crt) (A(S'1))0 = 	 (12.71) fDcrt  diet 

which integrates out over the short wavelength degrees of freedom. Then 
we can write the partition function as 

Z = Zu(ro) I DS; eliS' (eV )o , 	 (12.72) 

where 

Z,(ro) = Dat 	 (12.73) 

is a non-singular contribution to the partition function, involving only 
Fourier components A/€ < lki < A. As before, we shall ignore this term 
for purposes of computing the critical exponents. The partition function 
for the long wavelength degrees of freedom can be approximated using 
the cumulant expansion, and we obtain 

Z = 	DS; ens' (e1")0  

(v)o- f-i[(v2)0-(v)(1+0(1'3).  = 	DS!teNs' e 	 (12.74) 
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As in the discussion of the Gaussian theory, we shall need to make a wave 
function renormalisation of S';: 

SI(k) = z3./(kt); 	 (12.75) 

	

ke = £k, 	 (12.76) 

giving the renormalised Hamiltonian 

1-itae(ke)} = Hsilz•;e1 (V)0 + [(V2)0  — (17)01 0(V3). (12.77) 

To read off the coupling constant recursion relations, we write the renor-
malised Hamiltonian in the form 

-nt{St} = 	u24k)1:5'1(k)12  

1 	 4 

	

fki...k4(27r)
dO (E 	uy(ki • • • k4)Eki  • • ' :51c4 4

i=1 

+  

+ 0(8'6). 
(12.78) 

The coefficients um(k), uy(ki  • • • k4) are the renormalised versions of ro+ 
k2  and u0  respectively. Irrelevant terms (at the Gaussian fixed point) —
in fact higher order gradient terms — are generated and appear as the 
wavenumber dependence of um and %v. There will also be terms of 
order 3'6  etc., giving rise to coupling constants such as um, um, all of 
which are functions of momenta, in general. Fortunately, we shall find 
that to 0(E) these complication do not arise. That is to say, once we 
have generated recursion relations and found the critical fixed point, the 
following estimates will be valid: 

r* = 
u* = 0(E) 

u;(k) = r* + k2  + 0(d) 

4(k) = u* + O(E2) 

	

= OW) 	 (12.79) 

It is quite involved to check that these estimates are correct, and we will 
not be particularly persuasive here 

4 For details, consult the review article by K.G. Wilson and J. Kogut, Phys. Rep. 
C 12, 75 (1974). 



12.3 RG Beyond the Gaussian Model 	 365 

12.3.2 Calculation of (V)0: Strategy 
In this section, we will sketch the strategy of the calculation of (V)0, to 

prepare the reader for the algebraic horrors to follow. We wish to compute 

V = 1 tio (27r)d5(ki  + k2  + k3  + k4):5'ki :Sk2:5'k,:q. 	(12.80) 
4 	lc' k2k3k4 

where 

A/I ddk , 	f  A ddk 6,1(4  
(12.81) i ,§1c = i kTOd St(k)  + Ait  (2 -)d  0  

The strategy is to substitute eqn. (12.81) into the expression (12.80), 
and then perform the average (• • -)0. We will see later how to calculate 
the terms that we get from this procedure. Our first step is to generate 
these terms. Then, we will show how, in principle, we can calculate the 
renormalised coupling constants u2,1, u4, etc. 

To get the basic idea, think symbolically of (12.81) as saying 

:5' = .5'; + eye. 	(12.82) 

Substituting into S(ki)S(k2)5(1c3)5(k4) will give terms like 

S'S'S'S' + 4S'aS'S' -F6aaS'S' + • • • 	(12.83) 

We will need to be careful and keep track of the arguments of the S' and 
a fields. Once we have expanded V in this way, we shall put (• • •)0  around 
the expression for V. Now (• • •)0  only averages over 6-1, and therefore, we 
will be able to factor the S' out of the average. For example, a term such 
as 

7  joAft fAit jA uo 
dki 	dk2 	dk3 IA  dki  (270d45(ki  + k2 + k3 + k4) 

0 	Ai/ 	A/t 

X Nki),§/(k2)&i(k3Y7f(k4))0  

(12.84) 
will become 

74...  joive 	fAft 	JA 	jA tt0 
al 

	

	arc2 	dk3 	dk4  (27)145(ki + k2  + k3 + k4) 
0 	Ate 	AIL 

X 81(ki)Sl(k2) Cat(k3)d04))0  . 
(12.85) 
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The quantity (&e(k3)&e(k4))o  is easily calculable, as are the other terms 
generated by this procedure: 

	

(6-1(k))0  ; 	)(3-t(k2)17.e(k3))0  ; (aAki) • • • eft (k4))0  . 	(12.86) 

Once we have obtained an expression like (12.85), what do we then 
do with it? Suppose we now perform the integrals over k3  and k4, after 
we have calculated (eri(k3)eu(k4))0  (which is, after all, just some function 
of k3  and k4.) Then we will be left with a term 

Alt 

	

4 aki 	alC2 Se(k1)Se(k2) x (some function of k1, k2). (12.87) 
0  

After we have re-scaled the momentum and performed a wave function 
renormalisation, this term will be of the form 

u2,i(k)1,;'1(k)12. 	 (12.88) 

Hence, the term (12.84) in the expansion of (V)0  ends up making a con-
tribution to the renormalised coupling constant tt2,1  in the renormalised 
Hamiltonian. Proceeding in similar fashion for all the terms in 010, 

(V2)0  — (V)02, we can, in principle, calculate the renormalised coupling 
constants in a systematic way. 

We are almost ready to put this program into effect. Having seen that 
we are going to end up with correlation functions of ert(k), computed 
according to eqn. (12.71), let us now discuss how they are evaluated. 

12.3.3 Correlation Functions of Mk): Wick's Theorem 

These correlation functions are rather easy: we basically did the work 
in section 6.3.4 when we computed (ii,) in the Gaussian approximation. 
Recall that 

where we have defined 

= — 1 I A  dk (ro k2)lert(k)12  2 itit 

= 	l 2 fro + k2)Ier,(k)12 
V k   

Ei  E 
k 	Al 1<lkl<A 

(12.89) 

(12.90) 

(12.91) 
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The form of 71, implies that we can follow completely the discussion of 
section 6.3.4 for the Gaussian theory. Thus 

f°°  d&(ki) 	der(kr„)[er(ki)... "a(k77,)]en'T 
cat(ki)... oie(k,,,))0  = 	  

der(ki )...d'a(km )en,  —00 
(12.92) 

Following the arguments of section 6.3.4, where we calculated the corre-
lation function for the Gaussian approximation, we get 

(Mk].) • • • eit(km))0  = 0, for m odd. 	(12.93) 

When m = 2, we have simply the two-point correlation function result of 
section 6.3.4 

(ert(ki)&i(k2))0 = 5ki+k2,oVGo(ki)) 	(12.94)  
where the propagator is defined by 

1  
Go(k) =. 

ro k2 
(12.95) 

In the infinite volume limit, we obtain (using the results of section 5.7:2) 

(irt(ki)ert(k2))0  = (27025(ki k2)Go(ki). 	(12.96) 

To calculate the four-, six-, eight-, etc. point functions, consider again the 
numerator of eqn. (12.92). Since nu  may be written as the sum of Hamil-
tonians, one for each mode labelled by k, the integral always factorises. 
If there is a variable of integration a(k) which appears in the integrand 
raised to an odd power, the whole numerator vanishes, because exp 74, 
is an even function of the o(k) variables. By virtue of eqns. (12.94) or 
equivalently (12.96), the only non-zero contributions to the numerator 
arise when pairs of wavevector labels sum to zero. Every possible way to 
pair up the k labels of the variables of integration gives a contribution. 
To check this assertion, the reader is urged to do or at least contemplate 
exercise 12-1, after noting that the wavevectors are simply labels for the 
at fields. This conclusion is best written out explicitly; for m = 4, we 
obtain 

(ert(ki)1.te(k2)ert(k3)iii(k4))0  = 

(27r)do(ki k2)Go(ki)(21r)16(k3 k4)Go(k3) 
(27‘1145(ki k3)Go(ki)(2v)(145(k2 k4)Go(k2) 
(27)d5(ki ki)Go(ki) (2r)db(k2  k3)Go(k3). 

The reader is urged to write down the corresponding expression for the 
six-point function. These results, which are simple consequences of the 
properties of Gaussian integrals, are known as Wick's theorem. 

• 

(12.97) 
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12.34 Evaluation of (V)0  

Now we are ready to do the calculation of (V)0  in earnest. According 
to the considerations of section 12.3.2 and eqn. (12.83), we can write (V)0  
as a sum of terms: (V)gsss (v)os s,sa 	etc., where the superscript , (v)g soly,   

indicates symbolically the number of S and 'a fields in the term. The 
terms with an odd number of er fields will be zero by Wick's theorem. 
Then (V)ossss  will contribute to u4,/, (V )o 	will contribute to um, and 
(V)Tra  will contribute to the regular part of the free energy. We will 
denote the contribution of (Vm)0  to these quantities by the superscript 
m. Let us now calculate each of these contributions explicitly. 

We begin with 

•Ti  u0  /Al e  (v)ossss 	1 	
dici  • • • dk4  (27r)db(ki + • • • + k4):51(ki ) • • • S;(114), 

(12.98) 
where we have used (1)0  = 1. The next step is to renormalise: 

tic 
	

(12.99) 

	

Ee(kt) = z-lE;(k). 	 (12.100) 

Using the identity 	
46(ktli). id 45(1c€), 	(12.101) 

we obtain the 0(V1) contribution to u4,t, which we denote by u49: 

	

4  
1 (i) 1 	40-3d. 	 (12.102) 

' 	4 

Next we consider (V)oss". This involves two et fields, and thus, after 
integrating over these variables and using Wick's theorem (12.96), we 
obtain 

(V)gs" = luo  /AR  dki  dk2  E;(ki)E;(k2)(27r)db(ki k2) 
4 0  

A 	 (12.103) 

Here, the integral over k3  is simply a function of A, L and TO, so it is 
unaffected by the rescaling and renormalisation step, which we perform 
next, to give: 

A A (v)ra = 
4 	

/ akt  ŝt(kt):5,'1(....ke) 
Lit TO + k2.  

dk 	 (12.104) 

X 	
Alt 

 dk3 	
1  

2  r0  k3  • 
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u2 e. ) There are six such terms contributing to um  . There is another contribu-

tion to 4,1 which comes from lip, and which is the term we got in the 
Gaussian model analysis of section 12.2. Collecting together all the terms 
for the quadratic part of ft, we have 

1 

	

	 / fA  dk
t  z

2rd  ( 2  ro + 	1:S't(Ict)12  
o 

A 	 A 	 (12.105) 
6uordz2 	dki1:5t(ke)12 

A 	ro  
dk 	L2 . 

4 	 /€  

Thus, we can read off 

.̀2,/ 
= ,2i—d 

""' 
2 k r,, 

+ /2  

A dk 
3u0  ro 	k2] 

+ (12.106) 

As before, we will choose z so that the coefficient of ki is just 1/2. This 
gives z = £1+d/2  as before. In summary, to 0(V1) we obtain the renor-
malised coupling constants 

A dk  (1) U2t = roe + 	3Uot2 

lit (1'0 k2) 
(1) U 	0 
4r 	

4—d 	oe 
e = Uo t 	=1/04 

(12.107) 

(12.108) 

As anticipated in the general comments of section 12.1, u' N  uoic. 
To find a fixed point which is non-trivial, we must go at least to 

0(V2). This is a rather involved calculation, and to carry it out in a 
manner capable of systematic improvement, we need to become more 
proficient at perturbation theory. Thus, we now break off our calculation 
of the RG recursion relations to make a digression on the topic of Feynman 
diagrams. The reader who is not interested in the calculational details, or 
for whom this is the first exposure to RG for Landau theory, is advised to 
skip the next section, and to proceed directly to the RG analysis of the 
recursion relations, given in section 12.5. In any event, the reader should 
bear in mind that the apparent complexity of RG calculations is usually 
due to the technical details of obtaining the recursion relations, and not 
to the RG procedure itself. 
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12.4 FEYNMAN DIAGRAMS 

The terms in the perturbation series rapidly get quite complicated, as 
the reader has probably noticed. Feynman developed a useful shorthand 
for the terms, which is to write down diagrams indicating how different 
fields are paired up. There is one-to-one correspondence between each 
Feynman diagram or Feynman graph and a term in the perturbation 
series. This correspondence is not unique: there are many ways to write 
down diagrams for the terms, and people have their own preferences. Once 
one has figured out this correspondence (the Feynman rules), then one 
only has to be able to draw all the appropriate diagrams to see what one 
should compute. Another use of diagrams is to communicate efficiently 
what calculation one has done by writing down the diagram rather than 
a long expression: Feynman rules usually only differ by combinatorial 
factors, so the structure of the integrals is readily communicated by the 
diagram 

The presentation here is rather pedestrian, and the reader will be 
able to streamline it once the main points have been grasped; however, to 
benefit from this section, the active participation of the reader is required. 
So, with pencils at the ready, we proceed by writing down diagrams for 
the first order calculation that we have already done. 

12.4.1 Feynman Diagrams to 0(V) 

Consider 

(v
)o 
	

u.
sss  = 	0 	gki • • • dk4 (21r)d6(ki + • • • k4),;1(ki) • • • Al(k4). 

(12.109) 
We write this as St( k4) 

St( k 1) 

S1( k3)  

St( k2) 

Each external leg of the diagram represents a 3'; field, with the ki labels 
deployed in any arbitrary fashion. External legs have one end dangling, 
i.e. not connected to any other part of the diagram, and the momentum ki 
associated with each leg should be thought of as flowing into the leg from 

5  Strictly speaking, Feynman diagrams describe terms in perturbation theory for 
field theory, where there is no separation into short and long wavelength degrees of 
freedom. The rules for a perturbation calculation in field theory are of course different 
from those described below. 
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the outside. We will see why in a moment. The central vertex represents 
the factor 

• = -u1(27r)d  5(ki  k2  k3  k4). 	(12.110) 
4 

In general, each vertex is connected to 4 legs, because the interactions 
are quartic in this model, and the sum of the momenta flowing into each 
vertex must sum to zero. Momentum is conserved. Finally, an integral 
f dki over each ki in the external legs is performed, with 0 < tkii < A/i. 
The reader should check that the diagram, when decoded, does correspond 
to the algebraic expression (12.109). 

Let us now consider (V)oss". We begin by following the procedure 
above. We write down a vertex, and label the external legs; however, this 
time, two of the external legs are labelled by ert  fields. Now we need to add 
a new rule, to describe the averaging over the ere fields. Once we have av-
eraged over the at  fields, they disappear from the description completely, 
and we are left with a function of their momenta, as given by eqn. (12.96). 
We represent this sequence of operations as follows: draw a dotted line 
between the two ae fields, sitting on the ends of the external legs. This 
represents the intention to perform the average. The average itself ties 
together the two QQ  fields, to create an internal line, characterised by 
the internal momentum k. 

"or S S 
S S 

Each internal line carries momentum k, and represents a factor Go(k). 
The external lines represent :5";(ki) and .S'(k2). Having constructed the 
diagram, drawn in the momenta (and their directions), conserved mo-
mentum at the vertices, we now integrate over the internal and external 
momenta. The external momenta are as above, whereas the f dk of the 
internal momenta is performed for Ag < lki < A. Thus 

„ Ai/ 
gkidk2 (27r)d8(ki k2).§;(ki)31(k2) f A 	dic  

= .0  Ai/ 
dk

1:5,(k  )12
Afl ro k2  

io 	1 I  1  Aft ro 442.  
Thus we see that our results for the renormalised coupling constants 
(12.106) and (12.102) can be written as 

[ 4,(
2 
 _ ) z2i-d 7.012 + ki + 12 	0  "" — (12.112) 

(12.111) 



A 1/0 

4 (1/e 

2 

dk Go(k)) . (12.114) 
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249 = Z4L-3d  [ 	 I 
	

(12.113) 

In writing the results this way, we used our known expressions to construct 
the diagrams and the Feynman rules as we went along. In particular, 
the prefactors of diagrams in the recursion relations were obtained from 
section 12.3. 

Let us conclude this section by writing down (V)0  in these diagrams, 
but not refering to our earlier results. The strategy is to draw all the 
diagrams, then work out their multiplicative prefactors. To 0(V1), we 
simply write down a vertex with four external legs. We can write down 5 
separate primitive diagrams with 0,1,2,3 or 4 ere fields, the remainder 
being LS; fields. Those with odd numbers of lift  fields vanish by Wick's 
theorem. The diagram with all ;5.1; fields only occurs once. 

The diagram with two de  fields is the one with the prefactor 12 in 
eqn. (12.112). Its prefactor here (which we now calculate without using 
our knowledge of eqn. (12.112)) is given by noticing that once we have 
deployed the FYI  fields on the external legs (with the associated momenta), 
there is only one way to pair up the de fields. The number of deployments 
is 4!/2!2! = 6. 

Finally, there is the primitive diagram with four erL  fields. The number 
of ways to pair these fields up is found by noting that once we have paired 
up two of the ert fields, the other two must be paired to get a non-zero 
result. Thus the prefactor or degeneracy of this diagram is 3. Check 
this result by going back to the algebraic formula for (v)zu— ; draw the 
resultant diagram. 

The value of the diagram is 

A Up = 	fAI,  aki  • • • dlr..'  (27r)d6(ki + • • • + k4) 

4x (ert(ki) • • • efre(lc4))o 

In conclusion, our final expression for (V)0  is 

= 	+ 6 
	0  +3 	 (12.115) 
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12.4.2 Feynman Diagrams for (V2)0  — (V)02  

Let us begin by considering (V2)0. Recall that 

V = 4  ii...k4 (27r)do(ki + • • • + k4):5(ki)...,5(k1), 	(12.116) 
U0 

3'(k) = f 
Afi 

 dk SS(k) 	
A 

dk ert(k). (12.117) 
k 	 Ai/ 

Combining eqns. (12.116) and (12.117) to form V2  generates many terms. 
Before averaging, each term can be constructed from a primitive diagram, 
which is made up of two vertices and their associated four external legs 
placed next to each other. Each external leg may be either a 5 field or 
a eit field. We saw in the previous section that there are 5 different ways 
to deploy Sit  and at  fields on the legs of a single vertex, with 0,1,2,3 or 
4 eft  fields. Thus, when we juxtapose two vertices, and allow each to be 
decorated in 5 ways, there are 5 x 5 = 25 total primitive diagrams. Then, 
our algorithm requires us to form all possible pairs of ert  fields and perform 
the averaging, to form the final diagrams with their internal lines. The 
labour of this task is significantly reduced, when we realise that in many of 
these diagrams, ert  fields are paired only with another a, field decorating 
the same vertex. Thus, the value of the completed diagram is actually a 
product of the values of two separate diagrams. For example, there is the 
contribution to (V2)0  by 

X X 
When the completed diagram is actually a product of other diagrams, it 
is referred to as a disconnected diagram. Note that the diagram above 
is equal to the square of the first term in eqn. (12.115) for (V)0. Thus, 
when we compute the cumulant 

(V2)c  s (V2)0  — (112o 
	 (12.118) 

this disconnected diagram is actually cancelled! Exercise 12-2 invites the 
reader to verify that this cancellation is not an isolated instance: all of the 
disconnected diagrams in (V2)0  are cancelled by diagrams in (V)02. Thus, 
in the cumulant (V2)e  the only non-cancelling diagrams are those where 
the primitive diagrams are connected. The fact that the disconnected 

with 



(1/2 )e  = 8 + 36 >CX + 48 

+ 48 n  + 72 + 72 

+ 36 000 + 12 (12.119) 

0 
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S S S 
S 	S 	S a. 	S 

S (C) 0 

S o- 	o- 

(D) cr 	 (E) 

Figure 12.1 The five possible vertices and their decorations, from which are con-
structed the Feynman diagrams for the Ising universality class Landau theory. 

diagrams do not contribute to (en()  is an example of the linked cluster 
theorem, which is proved in the appendix. The subscript "c" can be 
thought of as denoting "cumulant" or "connected". 

Let us return now to the computation of (V2) . We begin by writ-
ing down the final result, and then discussing the derivation, for those 
interested in mastering diagrammatic perturbation theory. 

0 

The derivation is best presented in two steps: first work out the possible 
diagrams, second calculate the combinatoric factors. 

Step 1 

The starting point is that we are working to 0(V2), and so when we 
construct the primitive diagrams, we need two vertices, each with its four 
external legs. Each leg may be associated with a at  field or a Sit  field. 
Each end of a line can be either an 5' or a ert  field. We will pair up all 
the ends in all possible ways to create diagrams with 2 vertices; there are 
five possible vertices, as shown in figure (12.1), and we have to form all 
possible pairs by juxtaposition (A-A, A-B, A-C, etc.). Then we must tie 



12.4 Feynman Diagrams 	 375 

together the at fields by averaging and using Wick's theorem. The labour 
is reduced by only considering diagrams that will end up being connected. 

We know A-A is cancelled out by the linked cluster theorem. A cannot 
form a connected diagram with any other vertex, because it has no free 
eft fields. 

Consider vertex E. It can pair with itself in two ways to form E-E(a) 
and E-E(b) 

000 (12.120) 

(12d21) [  

plus one other diagram that is cancelled out by the linked cluster theo-
rem. (Exercise: draw this diagram.) E cannot pair with B because that 
would leave a free b field which would average to zero. Likewise with D. 
Pairing with A can only produce disconnected diagrams which are can-
celled out by the linked-cluster theorem. We are left with E-C. Ignoring 
the disconnected diagrams, E-C gives 

S 
S (12.122) 

Now consider vertex C. It can pair with itself to form C-C 

S~ 

	

KiD< 	(12.123) 

ignoring disconnected diagrams. C cannot pair with B or D because of a 
free at- field being generated. Vertex D can pair with B to give D-B 

S 
	 () 	(12.124) 

S 
and with itself to give D-D, for which there are two resultant connected 
diagrams (a) and (b): 

s 	 0 0 (12.125) (  

(:2) 	(12.126) 
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Finally, B can also pair with itself to form B-B 

S 	S 

	S 
S 	 S 

(12.127) 

Step 2 

Now we work out the degeneracy for each graph in the expression for 
(v2) /2. 
B-B: Each B has a degeneracy of 4 (the location of the Qt  field). Thus, 

including the factor 1/2 in (V% /2 gives 4 x 4 x (1/2) = 8. 
C-C: Each factor of C has a degeneracy of 4C2  = 6. The pairing of the 

ert fields can be done 2 ways: hence we have 6 x 6 x 2 x (1/2) = 36. 
B-D: B has a degeneracy of 4, as does D. The pairing of the 'at  fields 

can be done in 3 ways, because there are 3 &I fields on the D to 
pair with the de  on the B. Finally, note that this graph does not 
equal its mirror image; it comes from B-D and D-B. Thus we get 
4 x 4 x 3 x 2 x(1/2)=48. 

The remaining degeneracies are left as exercises. 

12.4.3 Elimination of Unnecessary Diagrams 

Now that we have enumerated the diagrams to this order in pertur-
bation theory, we must next evaluate them. Fortunately, we will see that 
most of the diagrams are not necessary for our present purpose, which, you 
may recall, is the calculation of the recursion relations for the quadratic 
and quartic coupling constants to OW:  

Diagrams E-E(a) and (b) have no 4 fields, and so do not contribute 
to the recursion relations for the coefficients of powers of S. Diagram 
B-B has six 4 fields, and therefore will represent a contribution to the 
irrelevant (at the Gaussian fixed point) variable um, and turns out to be 
O(e2) in any case. Note how the coarse-graining procedure has generated 
new terms in the effective Hamiltonian. 

The remaining diagrams contribute to u2,t and u4,1. Diagrams D-D 
and E-C contribute to u2,t, but are second order in uo, and therefore, 
at the fixed point u. = ow, they will contribute to r at 0(e2). Thus, 
we ignore them for our 0(e) calculation. Diagrams B-D and D-D are 
actually zero: the reader is urged to calculate the value of these diagrams, 
by translating them into integrals, and checking that they vanish. 

Now that the dust has settled, we are left with only one diagram to 
calculate: C-C. 
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12.5 THE RG RECURSION RELATIONS 

The conclusion of our diagrammatic analysis is that the recursion 
relations read: 

,„(
1 

 2) = ,21—d fro  + 7  2N 

	

",1 	 + 12  	; 

= z z 

	

(2) 	4B-3d [ 	 — 36 >..< 	. 

The diagram from C-C has the value 

( 

4  

n0)2 /Alt 
— 	 • • • dk4 (27r)d 8(ki + • • • + k4).§;(14) • • • .§;(k4) 

A  dk5 	1  
x 

ro 	kg ro (ki k2  — k5)2.  
(12.130) 

Note that this diagram leads to a form of the quartic coupling which is 
not diagonal in real space: the coupling between the 5'; fields is not simply 
a delta function, as it was in the original Hamiltonian (12.65), but has 
some wavevector dependence. We assert that the wavevector dependence 
is not important for the 0(c) calculation; thus we expand the last integral 
in (12.130) about k1  = k2  = 0, and ignore the corrections6. 

The next step is to perform the momentum rescaling and the wave-
function renormalisation, just as we did in section 12.3. Thus, our recur-
sion relations become 

ri = /2 [r0 3n0ii]  

u' = uoe [1 — 9uo12] 

(12.131) 
(12.132) 

where 

and 
L

A dk 
it ro k2  

(12.133) 

A 	ilk  
(ro k2)2  

(12.134) 

These are our RG recursion relations, to 0(4). Higher orders of uo in 
the recursion relation for r' are not needed, because they will turn out to 

6  For details, consult the review article by K.G. Wilson and J. Kogut, Phys. Rep. 
C 12, 75 (1974). 
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be 0(c2), but they are needed in the recursion relation for n' in order to 
obtain a non-trivial fixed point. 

The calculation we have just performed becomes incredibly laborious 
for higher orders in c and uo. The present method is used in practice for 
0(c) calculations, and is usually the quickest way to get the phase dia-
gram, upper and lower critical dimensionalities, etc. However, for accurate 
computation of the critical exponents, the most streamlined technique is 
to use the field-theoretic approach mentioned in the introduction of this 
chapter. 

Finally: a guide for the perplexed. Conceptually, we have done nothing 
more than the simple calculation of the recursion relation for the two 
dimensional Ising model using a real space renormalisation group, given 
in sections 9.6.2 and 9.6.3. The present calculation, however, is a more 
controlled approximation scheme. 

12.5.1 Feynman Diagrams For Small c = 4 — d 

To analyze the recursion relations (12.131) and (12.132), we evaluate 
/1  and /2  in c = 4— d dimensions. Thus, we treat spatial dimensionality as 
a continuous variable, and assume that it is legitimate to expand the inte-
grals as a power series about four dimensions (i.e. E = 0). Such an expan-
sion is formal, and although divergent, is assumed to be Borel summable! 
It is a very strong assumption that a given property of a physical system 
varies smoothly with the spatial dimensionality, and it is almost certainly 
incorrect in some cases. For example, topological characteristics, such as 
defect structures, entanglement of polymer loops, etc. are sensitive to the 
spatial dimensionality, and the existence of the Kosterlitz-Thouless tran-
sition is a vivid reminder of this. Nevertheless, in systems where there are 
no such complications, expansions in 'spatial dimensionality have proven 
to be very fruitful for calculating critical exponents and thermodynamic 
functions in the critical regime. 

Disregarding the potential complications, then, we expand 

-4,2(E) = -r1,2(0) + €4, 2(0) + 0(c2). 	(12.135) 

Since /1  and /2  appear as coefficients of uo in the recursion relations, we do 
not even need to evaluate them beyond zeroth order in c, for the purpose 
of finding the fixed point to 0(c). However, it is worth explaining how to 
continue these integrals in continuous dimensions, as this is necessary for 
higher orders in E. 

7  See footnote 2. 
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There are two classes of integral which typically arise from a Feyn-
man diagram calculation: spherically symmetric integrals and uniaxially 
symmetric integrals. 

Spherically Symmetric Integrals 

Consider the spherically symmetric integral of some function f: 

I= 	(d2d:),df(e) 
 = (2)d 

dq qd-i f (9,2 ), 	(12.136) 

where Sd is the surface area of a unit sphere in d-dimensions, evaluated 
in exercise 12-2(g) as 

r(d/2) . 
	 (12.137) 

In this formula, note that d need not necessarily be an integer. Now write 
d = 4 - c: the radial integral has one dummy variable, and can be per-
formed (in principle) to yield an answer which can only depend on c. 

Uniaxially Symmetric Integrals 

Choose the axis of symmetry so that q • z = cos 0. Then the integral can 
be written in the form 

ddq 

	

/ =  
(2)d 

f(q2 , 0) = C
J  
 dqq" 	d0(sin0)" f(q2  , 0) (12.138) 

where we can determine the constant C by looking at the special case 
when f is independent of 0. 

C - 	
1 	1 0  

(12.139) 
(2 .)d fol. 	(sin O)d-2 	(27r)d "d-1  

The radial integral can then be evaluated to give a function of c as before. 

Returning to the problem at hand, we only need lowest order results in 
c for the integrals 11,2. Since we anticipate that the fixed point value r* = 
0(c), we also expand the integrand in powers of To, which is legitimate 
because the integrals 4,2 are well-behaved near 7-0  = 0. Therefore II  is 

Sd- 

27d/2 
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given by 
f  A 	ddk 1 

12 	Critical 

A dd

k2

k 

= 

j 
— 

Phenomena 

ro 

	

— — 	0(4)] 1 	k2  

Near Four Dimensions 

hit  (270d 7.0  k2 Ate  

= 	ddk 1 	A ddk 
ro 	— 0(rg,E) 

	

Ail  (27r)d k2 	Ate  (270d k4 

= 1C4 J 
A 

kdk roK4  j(
A dk 

 0(4,E) 
Ate 	 Aft k  

= Ki2.112  
1 	1  ] roK4  log / -F 0(rg, 

(12.140) 
Here, the constant K4 is defined by 

sd 
K d = 

(27r)d' 

with K4  = 1/8r2. In a similar way, we evaluate /2 as 
fA ddk 	1 	(A ddk 1 

hit (27r)d  (ro  k2)2  Lie 7 712r) 	C)(T°' E)  

= K4  log t 0 (ro, e). 

(12.141) 

(12.142) 

(12.143) 

12.5.2 Recursion Relations to ()(e) 

The recursion relations become 
uo 	1 3 uo 

r' 	12  [ro 	(7,) A
2 
 (1 — 	-2r2  ( 71 ) ro log /I 

0(cuo, rguo), 	 (12.144) 

e 	ri,2 
4 	

2 ( 
k 4

uo)2
10gd 0(d,r0e2). 	(12.145) 

— r2   

Writing 

	

= eck41  = 1 + E log t ..T€ 2(log /)2  + 0(0), 	(12.146) 

we finally get the recursion relations to this order of accuracy in a form 
suitable for use: 

	

2 {ro +
4.0 4 
3 	( r/ = — uoA2

— 1 

u' up up 	9 uo 

	

= 4 + 4 E 	1.r.17] 

1 ) 
— — 

2  

1(4i. 

3 U 
rologd 

4 
— ; 	(12.147) 

(12.148) 

—
2 2  
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12.5.3 Fixed Points to 0(e) 
The Gaussian fixed point is a solution, as expected, with 

r* = 	= 0. 	 (12.149) 

However, now there is a new fixed point, the one which we have worked 
so hard to find: 

(12.150) 

Substituting into the recursion relation (12.147) we find 

r* = — 
EA2

. 	 (12.151) 
6 

The non-trivial fixed point is sometimes called the Wilson-Fisher fixed 
point. Note that C cancelled out of the equation for the fixed point, as 
it must do: the fixed point on a trajectory should not depend on the size 
of the steps one makes along that trajectory. Also note that r* depends 
explicitly on the cut-off A. However, our general considerations predict 
that the critical exponents will not depend on the cut-off, as we will see 
explicitly below. 

Now we need to linearise the RG at these fixed points to calculate the 
exponents. At the Gaussian fixed point, the linearised RG transformation 
is 

u* 2r2  
4 	9 

= _e. 

M = Or' /8r Or' /au _ t2  3A2(t2  — 1)/470) 
Ou' 	au' /au) 	0 	eE (12.152) 

At the Wilson-Fisher fixed point, we find 

M  = (
0-43  3A2(C2-1)/47r2). 	(12.153) 

0 	t—e 

The eigenvalues of the linearised RG transformation, which we will call 
At  and A2  are: 

Gaussian fixed point 

At  = /2 	lit = 2. 
A2 = te  y2 = E. 

Wilson-Fisher fixed point 

At  = .62'P)  = £2(1-46)  yt  = 2(1 — E/6). 
A2  = 	Y2 = --€. 

This result for y2  was announced earlier in eqn. (12.51). 

(12.154) 
(12.155) 

(12.156) 
(12.157) 
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12.5.4 RG Flows and Exponents 

We also need the right eigenvectors v1,2, satisfying 

My = Av, 	 (12.158) 

in order to examine the flows. We use the coupling constant space labelled 
by r and u/4, for a system with quadratic coupling constant r and quartic 
coupling constant u: 

v = (r,u/4), 	 (12.159) 

At the Gaussian fixed point, we find 

3A2  v1  = (1,0); v2  = (-7E2  , 1 . (12.160) 

The corresponding result for the Wilson-Fisher fixed point is left as an 
exercise for the reader. Note that v1  is not perpendicular to v2, which 
is why we did not label the eigenvalues At  and Au, as one might have 
wished. Note also that the position (? T, AVE./4) of the Wilson-Fisher 
fixed point is in the direction of v2 from the Gaussian fixed point: 

cA2 2r2e) 
(71vF,116/4) = ( 

6 
--  

9 
2ir2e 

9 v2. (12.161) 

Thus, the Wilson-Fisher fixed point lies along v2, a distance OW away 
from the Gaussian fixed point. According to this result, then, for c < 0 
(i.e. d > 4), the Wilson-Fisher fixed point has a negative value of the 
quartic coupling constant, which is unphysical. Thus, one expects that 
the Gaussian fixed point controls the critical behaviour. For e > 0 (i.e. 
d < 4), the Wilson-Fisher fixed point is in a physical region of parameter 
space, whilst in the special case c = 0 (i.e. d = 4), the two fixed points 
coincide. 

Let us look at the consequences for the RG flows. 

Flows for d > 4 

The linearised RG transformations near the Gaussian fixed point, as re-
flected in eqns. (12.154) and (12.155), show that the fixed point is stable 
along the v2  direction, but unstable in the r direction (i.e. to t). Thus u 
is an irrelevant variable, and the critical exponent v = 1/yt  = 1/2. 



(b)  
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Figure 12.2 RG flows near four dimensions: (a) d > 4. (b) d < 4. 

Flows for d < 4 
Now c > 0, and the Gaussian fixed point is unstable along both v1  and 
v2. Along v2, the flow is towards the Wilson-Fisher fixed point, now in 
a physical part of parameter space. The flows approach the Gaussian 
fixed point, are repelled along v2  towards the Wilson-Fisher fixed point, 
and then are repelled along the r (i.e. t) direction to the high or low 
temperature sink. Thus, there is a crossover, with the asymptotic critical 
behaviour governed by the Wilson-Fisher fixed point. Thus, 

1
t 	

1 
2 	6 

v = 
Y
— = — (1 -I- —6) + 0(c2). 	(12.162) 

The crossover exponent is 

= 1Y21 = 6  
Yt 2 

(12.163) 

as announced in exercise 9-3. 
Let us conclude by calculating the values of the critical exponents, 

using the scaling laws. 

ry = 1 + e/6  (12.164) 
=0 (12.165) 

a = c/6 (12.166) 
1 	E 

(12.167) 

8=3+E. (12.168) 

The fact that 77  = 0 to this order in c simply means that 71= 0(e2). This 
reflects the fact that the wave function renormalisation was 

z  = 	 (12.169) 
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Table 12.1 CRITICAL EXPONENTS FOR THE ISING 
UNIVERSALITY CLASS IN THREE DIMENSIONS 

Exponent e-expansion to 0(c) 	Mean Field 	Experiment Ising (d = 3) 

a 0.167 0 (disc.) 0.110 — 0.116 0.110(5) 
0.333 1/2 	0.316 — 0.327 0.325±0.0015 

7 1.167 1 	1.23 — 1.25 1.2405±0.0015 
6 4.0 3 	4.6 — 4.9 4.82(4) 

0.583 1/2 	0.625±0.010 0.630(2) 
0 0 	0.016 — 0.06 0.032±0.003 

At second order in c, the wave function renormalisation would acquire 
an anomalous dimension, which, as we have disussed in section 7.2, is 
equivalent to a non-zero value of 71. As a crude estimate of the critical 
exponents in three dimensions, we take the liberty of setting c = 1 in the 
results above. The results, shown in table (12.1), are closer to the correct 
results than those of mean field theory. 

12.6 CONCLUSION 

In this chapter, we showed that systematic RG calculations are possi-
ble near the upper critical dimension, and yield semi-quantitative results 
for the critical behaviour, and indeed the phase diagram itself. The c-
expansion has proved to be invaluable in this respect. It is also worth men-
tioning that many other expansion techniques have been devised, to capi-
talise on small parameters in a given problem. These include c-expansions 
about the lower critical dimension and expansion in 1/n, where n is the 
number of components of the order parameter. In addition, many numer-
ical methods have also been developed to implement the renormalisation 
group. 

A full survey of the advanced development of the RG and the range 
of problems to which it has been applied is beyond the scope of this book, 
although a paper trail has been laid in the footnotes. The interested reader 
will find many of these developments mentioned in the Nobel lecture of 
K.G. Wilson$ 

8  K.G. Wilson, Rev. Mod. Phys. 55, 583 (1983). 
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APPENDIX 12 - THE LINKED CLUSTER THEOREM 

The cancellation of disconnected diagrams in the second-order pertur-
bation theory calculation of the renormalised Hamiltonian is an example 
of the linked cluster theorem, which applies not only in the present 
context, but in field theory, many-body theory and the cluster expansion 
of non-ideal gases, where it was first formulated by J. Meyer. 

Theorem 

[
(en()  = exp 	W(Ci) , 	 (Al2.1) 

where W(Ci) is the value of the ith connected diagram Ci, including the 
degeneracy of the diagram. 

Proof 
The left hand side may be written 

00 
(eno =m!ivmx 

ro • 
m=0 

(Al2.2) 

Vrn has m vertices. When we write down the terms in vm, we draw 
all possible primitive diagrams with m vertices, decorated in all possible 
ways by eft  and S; fields. Consider one of these primitive diagrams with m 
vertices and :5'; and o f  fields deployed in some fashion. If we now average 
just this one primitive diagram, we will tie together the of  fields in all 
possible ways to generate several diagrams, some of which may be fully 
connected, the remainder being disconnected — i.e. the juxtaposition or 
product of several connected diagrams. There are m! orderings of the 
vertices and thus (Vm)0  /m! is the sum of all connected and disconnected 
diagrams with m vertices. Each diagram appears only once, by virtue of 
the m!. Now perform the sum over m: the left hand side is the sum of all 
diagrams, connected and disconnected. 

Now let us consider a diagram made up of n connected diagrams. We 
will call such a diagram (obviously disconnected when n > 1) a n-diagram. 
Let 

Sn  = sum of all n-diagrams. 	 (Al2.3) 

To construct Sn, think of an n-diagram as being made up of n boxes in 
a line, each of which may contain a connected diagram. Let Ci be the ith 
connected diagram, labelled in some arbitrary manner. Then the value 
of an n-diagram with (e.g.) C7  in box 1, Cg  in box 2, C137  in box 3, 
etc. is W(C7)W(C9)W(C137).... We can make a different n-diagram by 



n! 
Finally, the left hand side is En  S.. Thus 

S. — 
(WW1 ) + W(C2) + W(C3) + • • •)n 
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putting (e.g.) C2  in box 1, but otherwise leaving all the other boxes the 
same. The value of the new diagram would be W(C2)W(C9)W(C137) • • • • 
Alternatively, we could have substituted (e.g.) C4  for C9, in which case, 
the diagram would now be W(C7)W(C4)W(C137) .... Since the value of 
the n-diagram is the product of the values of the component connected 
diagrams, the substitutions can be performed in each box independently. 
For given contents of boxes 2, 3, ... , n we can substitute each connected 
diagram into box 1; this gives a value 

(W(C1) W(C2) W(C3) + • • .) x (rest of n-diagram). 	(Al2.4) 

Likewise, for given contents of boxes 1,3,4,... , n, we can substitute each 
connected diagram into box 2 etc. In this way, we can generate all the 
n-diagrams; however, this process generates each n-diagram n! times, be-
cause the order of the connected diagrams in each n-diagram is immate-
rial. Thus, 

(Al2.5) 

(eno 	Sn 

= v  (Ei W(Ci))n  
n 

n! 

= exp [E W(Ci) . 

(Al2.6) 

(Al2.7) 

(Al2.8) 

Q.E.D. 

EXERCISES 

Exercise 12-1 
This question is about Gaussian integrals; by doing it, you will be able to 
follow the demonstration of Wick's theorem given in the text. 
(a) Prove that 

r 	xqzr e-fAiixixi 
(xqx,)= 	_ Ayr 

f 

dnx 
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where A is a real symmetric n x n matrix, and Einstein summation 
convention is used. 

(b) Using the same notation as above, prove that 

(ZaZbXcXd) = (XaXb)(XcXd) (Xci Zd)(ZbXc) (XaXc)(XbXd) • 

Exercise 12-2 
These exercises cover some technical aspects of Feynman diagram calcu-
lations. 
(a) Check that all the disconnected diagrams in (V2)0  are cancelled by 

07)2. 
(b) Calculate the third order cumulant in terms of the first and second 

cumulants. Verify explicitly that the disconnected diagrams for 54  
Landau theory are cancelled (do a reasonable fraction of them at 
least). 

(c) Convince yourself of the result that if 7-/ = no + 	then the two- 
point function is given by G(r — r') = (S(r)S(e)eni )e  where the 
expectation value is with respect to ?-lo and the subscript c stands for 
connected part. 

(d) Complete the calculation of the degeneracies for the Feynman dia-
grams of (V2)c  /2. 

(e) Calculate the diagrams designated B-D and D-D in the text, and show 
that they vanish. 

(f) Let pi be the ith prime number. Show that 
00 

ll(1 + pi) = 1 + 2 + 3 + 4 + 5 + 6 + • • • = En. 
n=1 

Of course, this result is purely formal; the series is divergent. Use the 
idea of your demonstration to show that 

00 

n8
, 	Re s > 1. 

n=1 

Explain the relevance of this question to the linked cluster theorem. 
Find the surface area of a unit sphere in d dimensions by evaluating 
the integral f ddqe—q2  in two different ways: first in Cartesian co-
ordinates and second in spherical polar co-ordinates. You will need 
the result that the Gamma function is defined by 

00 
r(z) = Jo 	dt, Re z > 0. 

(g)  
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Exercise 12-3 

This question asks you to analyse the RG recursion relations for the 
Landau theory of the Ising universality class, using the differential RG. 
(a) Starting from the recursion relations for 54  Landau theory, derive 

their differential form: 

dr 	Au 
ds = 2r + 	r  

	

du 	r 	Bu  1 
ds = u  LE  (1+ r)2.1 

where A = 121(4, B = 36.K4, u = u0/4 and K4 = 1/87r2. 
(b) Find the fixed points and the linearised RG in their vicinity. Sketch 

the flows for c > 0 and E < 0. Try and be as complete as you can. 
Show that the temperature-like scaling field is a linear combination 
of r and u. 

(c) For the remainder of this question, we study the marginal case E = 0. 
Show that 

	

e 	r1/2(log 01/6. 

(d) Consider the scaling form of the free energy density, and show that a 
simple-minded approach gives 

f(t,u) t 2(— log 0'2/3  

and find the form of the specific heat, C. Explain briefly why this 
answer might be wrong. In fact, the correct result is that9  

C N (— log 01/3. 

Try and derive this yourself. 

9  See D. Nelson, Phys. Rev. B 9, 3504 (1975); J. Rudnick and D. Nelson, Phys. 
Rev. B 13, 2208 (1976). 
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